
VA-R161 917 FIYPRE- A PRE-PROCESSOR FOR THE CONCEPT EXPLORATION /
MODEL SNOP5OU) DEFENCE RESEARCH ESTABLISHMENT ATLANTIC
DARTMOUTH (NOVA SCOTIA) B LEE ET AL AUG 85

UNCLASSIFIED DREA-85/3i3 F/G 13/10 NLIolllllllllll
EhEEEmhEEEohhI
EhhhEEEEmhEEEEElhllIEEEEEEEE
EElllhllIEllEIllIllllIIEIElllllslllollll
lllllllollll

! - . .inr. r * ,.- -, s .nr, - .I , t + -7 -, - -,P+ -:. '-, ' . W "-. --.. -. .

.6

i

1.0
'110

12

11111140L~ 11P12.0
111111.252.
IIIIIr'*

..

MICROCOPY RESOLUTION TEST CHART I
NATIONAL BUREAU OF STANDARDS 1911 A

oA-

44,

.. * 4. -- ~. ~w W w_ __ _

.* '

- , +I . , ,I - + . . - -2

UNLIMITED DISTRIBUTION

National Defence D6fense Nationale

RmHWNh and Btrpau doRehe LZ
Development Branch et veo mnt_

TECHNICAL COMMUNICATION B5/310

AUGUST 1985

I~i

FIVPRE:
A PRE-PROCESSOR FOR THE

CONCEPT EXPLORATION MODEL SHOP5

Bonny Lee
J.L. Colwell P.V. Godreau

DTIC
ELECTE

DEC 0 4 1W5

Defence Centre de
L.. Research (Recherches pour la

Establishment D6fense
Atlantic Atlantique

Cansad buton Unlimted

R5 12 S~ 09 2- -,-.--

*% % N;

UNLIMITED DISTRIBUTION

I National Defence De-fense Nationale
Research and Bureau de Recherche
Development Branch et Developpment

FIVPRE:
A PRE-PROCESSOR FOR THE

CONCEPT EXPLORATION MODEL SHOP5.

Bonny Lee
J.L. Colwell P.V. Godreau

AUGUST 1985

Approved by L.J. Leggat H/Hydronautics Section

DISTRIBUTION APPROVED BY

0/TO

TECHNICAL COMMUNICATION 85/310

Defence Centre de
Research tvRecherches pour la
Establishment D6fense
Atlantic Atlantique

CanadA
Gmaui

ABSTRACT

FIVPRE is an interactive pre-processor for SHOP5, the DREA
Concept Exploration Model for conventional monohull frigates and
destroyers. FIVPRE provides the user with a simple means to create and
modify the input files for SHOP5. Prior knowledge of the format of these
files is not required. Through a simple command language, FIVPRE can be
used to define new or change existing values of SHOP5 input parameters
from the terminal. FIVPRE also keeps records of the files it has
created. This Technical Communication is a user's manual for FIVPRE,
describing the FIVPRE commands and giving examples of terminal sessions.
The appendices contain a brief description of SHOP5 input and program
documentation of FIVPRE, including descriptions of all the procedures in
FIVPRE.

ii

RESUME

Le FIVPRE est un pr~processeur interactif du SHOPS, le modble
d&exploration des concepts qu'utilise le CRDA pour les fr~gates et les
destroyers monocoques classiques. Le FIVPRE fournit i l'usager un moyen
facile de cr~er les fichiers d'entr~e pour le SHOP5 ou de modifier ces
fichiers, et cela sans avoir 1 connattre d'avance le format des fichiers
en question. A partir du terminal et au moyen d'un langage de commande
simple, on peut se servir du FIVPRE pour d~finir de nouvelles valeurs dans
les param~tres d'entr~e du SHOP5 ou pour modifier les valeurs existantes.
Le FIVPRE r~pertorie 6galement les fichiers qu'il a cr66s. La prfisente
communication technique est un guide de liusager du FIVPRE qui d~crit les

* commandes du syst~tme et donne des exemples de sfiances d'utilisation au
terminal. Les annexes contiennent une brave description des entrees SHOP5
et des renseignements sur la programmation du FIVPRE comprenant notamment
des descriptions de toutes les proc-6dures applicables au prA-processeur.

Accesion For

NTIS CRAMl
OTIC TAB
Unannounced
Justification

By
Dist. ibution!

Availability Codes

Avail and/or
Dist Special

A-I

N'C LN 2

TABLE OF CONTENTS

ABSTRACT ii

1. INTRODUCTION F
4", ,"1. 1 Purpose of FIVPRE

1.2 An Overview of SHOP5 Input Variables

2. FEATURES OF FIVPRE 2

2.1 The FIVPRE Command Language

2.2 User-Friendly Features

3. COMMANDS IN FIVPRE 5

3.1 CHANGE

3.2 DEFAULT
3.3 DISPLAY
3.4 DUMP
3.5 ENTER

3.6 EXIT
3.7 FIND

3.8 HELP
3.9 NEW

4. TWO EXAMPLES OF USING FIVPRE 9

4.1 Creating a New File with FIVPRE
4.2 Editing an Existing File with FIVPRE

5 CONCLUDING REMARKS 10

TABLE 10

APPENDI CES 11

A. DESCRIPTION OF SHOP5 INPUT VARIABLES
B. CREATING A NEW FILE (SAMPLE TERMINAL SESSION)

C. EDITING AN EXISTING FILE (SAMPLE TERMINAL SESSION)

D. MACHINE DEPENDENCIES
E. GENERAL PROGRAM STRUCTURE OF FIVPRE
F. COMMAND PROCESSING SUBROUTINES
G. THE FIVPRE DICTIONARIES AND ASSOCIATED SUBROUTINES

H. COMMAND EXECUTION SUBROUTINES
I. UTILITY SUBROUTINES

REFERENCES 70

iv

,--J.
"..

i. INTRODUCTION

A "concept exploration model" is a simplified form of a ship

synthesis model which addresses the earliest phase of the ship selection

process. It is a computer program which takes as input a set of ship
dimensions and simple operational requirements, and calculates therefrom

ship stability, performance, and other capabilities. Sufficient
constraints on ship geometry and stability are incorporated into the

program to ensure that unrealistic configurations are rejected; hence
performance is estimated only for ships which are feasible from an
engineering point of view.

1.1 Purpose of FIVPRE

FIVPRE is an interactive pre-processor for SHOP5 (1), the DREA

Concept Exploration Model for conventional monohull frigates and

destroyers. SHOP5 uses a data file which must have a particular format.
With FIVPRE, the user can create and modify data files to be used as SHOP5

*input, without having to know the exact format of the input file.

1.2 An Overview of SHOP5 Input Variables

SHOP5 input includes parameters which describe a ship or number

of ships, and parameters which control the execution of the program. All

these parameters, or 'variables', are organized into sets of variables, or
'records'. There are 11 records altogether, but not all of them are used

in every set of input. Their titles are as follows:

Record 1: Title
Record 2: Program Control Integers

Record 3: Primary Input
Record 4: Re-definition of Method Control Integers

Record 5: Re-definition of Optional Input
Record 6: Re-definition of Rejection and Seakeeping Criteria

Record 7: User-supplied Appendage Resistance Coefficient
Record 8: User-supplied Overall Propulsive Coefficient

Record 9: Engine Algorithm Data
Record 10: User-supplied Generator Data

Record 11: User-supplied Cost Factors

Records 1,2, and 3 are required input. Record 1 contains only

one variable, which is the title of the file. Record 2 contains 8

integers which control the execution of SHOPS. Record 3 contains

variables which describe the hull form and which specify the operational

requirements for a ship or so' of ships.

Records 4,5, and 6 supply additional information for SHOP5.
Record 4 contains up to 9 integers, which determine the design methods

used by SHOP5. The 9 method control integers have default values, but any
or all of the integers may be re-defined by the user. Record 5 contains
the optional input variables which describe the ship or set of ships in

more detail. There are 44 optional input variables, and they all have
default values. Like the method control integers, these optional input
variables may be re-defined by the user. Record 6 contains the rejection
and seakeeping criteria. There are 7 rejection criteria and 4 seakeeping
criteria. Like the variables of Record 4 and Record 5, they have default
values that can be re-defined by the user. For Records 4, 5, and 6, only
the variables which are re-defined by the user appear in the input data

file for SHOP5.

Records 7,8,9,10, and 11 are not required unless certain method
control integer, are re-defined by the user. Record 7 contains the
user-supplied appendage resistance coefficient. Record 8 contains the
user-supplied overall propulsive coefficient. Record 9 contains the
engine algoritbn data. Record 10 contains the user-supplied generator
data. Record I contains the user-supplied cost factors. Record 11 has a

similar format to that of Records 4,5,and 6, and contains only those cost
factors out of a possible 16 which have been re-defined by the user.

* . For more information on the SHOP5 input variables, see Appendix A

or the SHOP5 User's Manual (I).

2. FEATURES OF FIVPRE

The program F1VPRE acts as an intermediate storage area for SHOP5

input variables. Using FIVPRE, the user can define the values for input
variables, either from the terminal or from an existing data file; he can
display these variables and change their values; and he can write them on
a data file whic'h will be the input for SHOP5.

2.1 The FIVPRE "omniand Language

Througb the FIVPRE command language, the user can tell FIVPRE

what action he wants to take, and which variable the action should be

applied to. This, a FIVPRE instruction has the syntax

<actiorc> <specifier>

where <action> is tb :ommand word and <specifier> is a variable
name or a recor,' name. For some commands, <specifier> is not needed.

. .. , . . ' ° L > - - -,_ - . - '. '. x ' z ..__-.__.
'

T P V -"-

The algorithms used by FIVPRE to recognize commands are based on
algorithms developed by Hally and Dent (2). FIVPRE uses a dictionary of
command words to find which command the user wants. Since a command word
may be uniquely specified by its first few letters, the user need not type
in the whole command word. For example, the command "CHANGE" may be

, specified by "C", since "CHANGE" is the only word in the dictionary which
starts with "C". On the other hand, the commands "DEFAULT", "DISPLAY",
and "DUMP" all start with "D", so "D" would not uniquely identify a
command. However, "DE" would be recognized as "DEFAULT" by the
dictionary, since no other command word starts with "DE". Similarly, "DI"
would be recognized as "DISPLAY", and "DU" would be recognized as "DUMP".

FIVPRE uses two dictionaries to find which variable or record the
user wants: one dictionary uses the variable's "official" abbreviation,
while the other uses its description (enough to uniquely identify the
variable). FIVPRE first looks through its dictionary of abbreviations.
Then, if it can't find an abbreviation that matches the word specified by
the user, FIVPRE looks through its dictionary of descriptions for phrases
containing the words specified by the user.

The abbreviation dictionary and description dictionary contain

the abbreviations and descriptions of records as well as variables;

therefore, the user can specify records in much the same way as he
specifies variables. An example of a command which refers to a record
is: "DISPLAY PRIMARY INPUT". The command "DISPLAY RECORD 3" would have
the same effect. Table 1 contains the abbreviations and descriptions of

the records.

An example of how FIVPRE would identify a variable follows.
Suppose the user wants to display the superstructure length, which has the
abbreviation LS in the User's Manual for SHOP5. The user could specify
this variable by using its abbreviation LS, by using all of its
description, SUPERSTRUCTURE LENGTH, or by using only part of its
description: SUPER LEN. Suppose the user types the command "DISPLAY SUPER

LEN". To identify the variable, FIVPRE looks through its abbreviation
dictionary for "SUPER". It doesn't find a matching entry in the
dictionary; it then looks through its description dictionary for any

description which contains both "SUPER" and "LEN". In this example, LS,

the superstructure length, would be the only matching description.

Sometimes the description specified by the user could apply to
more than one variable. In this situation, FIVPRE will list the possible
matching variable descriptions and ask the user to pick one. For example,
suppose the user types "DISPLAY SU LE". FIVPRE responds with:

3

[. . .

. , '% '. .- ,- -' . % - ." % %" • . ' -. ." . -- . - . ' .' ,.-., '% ° % .. % .. .

- - . -' - . -; -; _ - w --L 9 - -. - - . - . .- .-

** AMBIGUOUS INPUT **

1 Ls: SUPERSTRUCTURE LENGTH

2 AKI: COST FACTOR: HULL (LESS SUPERSTRUCTURE)
3 AK1S: COST FACTOR: MISC. SURCHARGES, LEAD SHIP

ENTER SELECTION NUMBER (OR 99 FOR EXIT) =>

The user would type in 1, 2, 3, or 99, depending on which
variable he wanted.

If there are more than 15 possible choices, FIVPRE will not
display them. Instead, 't will print out a message saying that the record
or variable name is too ambiguous.

2.2 User-Friendly Features

Several FIVPRE features make the program easier to use. These
features include helpful commands, exrensive use of prompts when changing
the values of variables, checking routines for validating input from the
user, and special input values which can be used in response to prompts.
In addition, FIVPRE will write out a brief introduction to the program at
the beginning of its run, if the user desires.

Helpful FIVPRE commands are NEW, HELP, and DEFAULT. All three
commands are described in detail in Section 3.

The NEW command is particularly useful for the user who is not

familiar with the SHOP5 input variables. This command prompts the user
for all the data needed to create a SHOP5 input file; the user is only

required to respond to the prompts.

The HELP command gives inforiation about FIVPRE commands. It
either displays a list of all the FIVYRE commands or displays information
about a specific command. This is helpful for the user who is not
familiar with the FIVPRE command language.

*The DEFAULT command displays the default value of a specified

variable. For example, the command "DEFAULT VS' would display the default
value of VS, the superstructure volume. This command is uiseful when the
user is trying to decide whether the default value of a variable is
appropriate or whether he should re-define the value of the variable.

FIVPRE uses prompts to request input when the user is changing
the value of a variable through the keyboard. There are two types of

prompts: direct prompts and menu prompts. A direct prompt is an
open-ended request for data, e.g. ENTER THE VALUE FOR Ls: SUPERSTRUCTURE
LENGTH => . A menu prompt asks the user to make a selection from a list
of options, e.g.

1 ..

................................. ~ - . 2~-~ - .. .- --

TYPE OF ENGINES

0 - SHOP5 RUBBER ENGINES

1 - USER SUPPLIED RUBBER ENGINES
2 - SHOP5 REAL ENGINES

3 - USER SUPPLIED REAL ENGINES

ENTER NUMBER = >

The user then types in the number of his choice. This type of

prompt is used when a variable has a limited number of allowed values.

Invalid input in response to a prompt results in an error message
and another prompt. "Invalid input" means that non-numeric characters
are used when a number is required (except for the special input values
noted below), or an input value is outside the allowed range in a menu
prompt. For example, if the prompt is "ENTER THE VALUE FOR Ls: SUPER-
STRUCTURE LENGTH = >", and the user types a number using the letter 0
instead of the digit 0, a message will be displayed: "**INVALID INPUT**".
The program will then prompt the user again. This gives the user another
chance if he should hit the wrong key when typing a response to a prompt.

Two non-numeric characters which are not invalid input are the
character "*" and the word "DEF". They have special functions in FIVPRE.

'4 When data is requested through a direct prompt, the user may use the
character "*", to mean "leave the value of variable the way it is". For
example, suppose the user types "CHANGE LS" and then decides against
changing LS (the superstructure length); when the prompt appears, the user
can type "*" and the value of LS will not be changed.

The other special input value, "DEF", means "default value" when

typed in reponse to a direct prompt. For example, suppose the prompt is
"ENTER VALUE FOR Vs: SUPERSTRUCTURE VOLUME >". Typing "DEF" will set VS
to the default value. In effect, "DEF" cancels the re-definition of the
variable. Note that this response can only be used for optional input
variables, rejection and seakeeping criteria, and cost factors. Using
"DEF" for other variables will result in an error message. Note: The
command DEFAULT should not be confused with the special input value "DEF";
DEFAULT displays the default value, while "DEF" sets the default value.

3. COMMANDS IN FIVPRE

3.1 CHANGE

The CHANGE command changes the values of a set of variables (a
record) or a single variable. The format for the command is seen below:

44.

CHANGE variable name Example: CHANGE TITLE
CHANGE record name Example: CHANGE REC4

After a CHANGE command is entered, a prompt or series of prompts

will appear. The type of prompt depends on which variable is being
changed; some variables use a menu prompt, others use a direct prompt. If

an entire record is being changed, FIVPRE will generate prompts for all
the variables in the record. For records 4,5,and 6, a menu prompt is used
for the entire record, giving the user a choice of variables to re-define.

In some cases, the command to change a single variable will
result in a series of prompts rather than a single prompt. This can occur
in two situations. In one situation, changing the value of one variable
may affect several other variables, which would need to be re-defined.
For example, changing the mode from search to describe would require that

the primary input variables be re-defined. In the other case, the
variable specified in the command belongs to a subgroup of variables. An

example of such a subgroup is CPLO, CPHI, and 13 (minimum prisiatic
coefficient, maximum prismatic coefficient, and number of prismatic
coefficients to be considered). If the user wants to change only one

parameter in the subgroup, he can use the special character "*" in

response to the additional prompts.

3.2 DEFAULT

The DEFAULT command displays the default value of a variable. The

format for the command is seen below:

.DEFAULT variable name Example: DEFAULT NDECK

After the DEFAULT command is entered, FIVPRF displays the default

value of the variable. If the variable does not have a defauit value,
FIVPRE will print a message telling the user that there is v.o default

value for this variable. Note that it is not possible to use this command
to display the default values of a record; this command only works for
single variables.

3.3 DISPLAY

The DISPLAY command displays the value of a single variable, the
values of a record, or the values of all the variables. The format for the
command is seen below:

DISPLAY variable name Example: DISPLAY MODE
DISPLAY record name Example: DISPLAY RECORD 3
DISPLAY ALL

6

- .o...

For most records and variables, the format used to display the

values of the variables is straightforward. However, for a few of the

records, some explanation may be needed. For Record 4, the re-definition
of the method control integers, all the method control integers are
displayed, whether they have been re-defined or not. The integers that

have been re-defined are marked with a "*" in the left-hand margin. For
Records 5 and 6, only the re-defined variables are displayed, in order to
improve the readability of the display.

3.4 DUMP

The DUMP command writes the values of all the variables onto a

file called FIVIN, which is the input file for SHOP5. The user may also

specify the name of another file in this command, in which case FIVPRE
writes the data both to this file and to FIVIN. The format for the

command is seen below:

DUMP
DUMP file name Exariple: DUMP SAMPLE

If the user has not specified a file name in the DUMP command,

FIVPRE will ask the user for the name of the file in which he wants the
input data stored. If the the user hits the return key without typing a

* file name, FIVPRE will write the data to the file FIVIN.

If the specified file is not FIVIN, FIVPRE checks to see if the
file already exists. If this is the case, FIVPRE will tell the user and

ask the user if he wants to replace the existing file (thus destroying

whatever was previously written on the file). If the user doesn't want to

*replace the file, he will be asked for another file name.

After the user has either entered the name of a new file or
decided to replace an existing file, FIVPRE writes the data to the
specified file. The data is also written to the file FIVIN.

Note that data is not really saved unless the user specifies a
file other than FIVIN, since FIVIN is always overwritten when a DUMP is
done.

3.5 ENTER

The ENTER command enters values of variables from an existing
data file. The format for the command is seen below:

ENTER

ENTER file name Example: ENTER FIVIN

7

. . .' . . *

If the user has not specified a file name in the ENTER command,
FIVPRE will ask the user which file he wants to enter. If the file

exists, FIVPRE reads the data from the file into the appropriate
variables. If the file does not exist, FIVPRE will ask the user if he
wants to specify another file.

3.6 EXIT

The EXIT command stops the program. The format for this command

is seen below:

EXIT

When the EXIT command is entered, the user exits from FIVPRE. If
the user has changed the values of some variables and has not saved the
values (through the DUMP command), FIVPRE will ask if the user wants to
save the current file.

3.7 FIND

The FIND command searches through a library file, using a search

key supplied by the user, and prints out the names of data files which

contain the search key in their titles. The format for the command is

seen below:

FIND

After the FIND command is entered, FIVPRE asks the user for a
search key. This is a word, phrase, or string of letters which FIVPRE
looks for in the title of any existing data file. For example, if the
user wants FIVPRE to list any files which have "HELICOPTER" in their
titles, then "HELICOPTER" is the search key. As FIVPRE looks through the
library file, it prints out the title and the file name of any files which
contain the search key in their title. If the user hits the return key
without typing in a search key, FIVPRE will list all the entries in the
library file.

The library file is called FIVLIB and contains a list of the

titles and file names of data files which have been created by FIVPRE.
FIVPRE updates FIVLIB by several different methods. At the beginning of
each session, FIVPRE checks through FIVLIB and deletes those entries whose
corresponding files do not exist on the system; this ensures that files
which have been removed from the system since the last use of FIVPRE are
no longer listed in FIVLIB. Each time the DUMP command is used, the title

* and file name are added to FIVLIB. If a user enters data from an existing
file which is not listed in FIVLIB, FIVPRE will add the title and file
name of the file to FIVLIB. No more than 30 files can be listed in FIVLIB;
any files created after FIVLIB is full will not be listed in FIVLIB.

8

3.8 HELP

. , The HELP command lists all the FIVPRE commands and also gives
* . information about a particular command. The format for this command is

seen below:

HELP
HELP command Example: HELP DISPLAY

"HELP" lists all the commands in FIVPRE, while "HELP command"
tells the user the purpose and format of the specified command. The
command "HELP SPECIAL" will print an explanation of the two special input

.symbols, "*" and "DEF".

3.9 NEW

The NEW command changes the values of all the variables. It is

- .used when creating new data files. The format for the command is seen
below:

NEW

If the user has made changes to the values of any variables and
has not done a DUMP before entering the command NEW, he will be asked
whether he wants to continue with the NEW command, since the existing
values of all the variables will be erased. If the user wishes to
continue, FIVPRE will proceed with the execution of the NEW command.

The command NEW generates a series of prompts for all the
variables needed to create a new file. These variables are not

* .automatically written to a file, hence the user has a chance to edit the
data before using the DUMP command to write the data to a file.

4. TWO0 EXAMPLES OF USING FIVPRE

4.1 Creating A New File With FIVPRE

To create a new file using FIVPRE, only the commands NEW and DUMP
are needed. Appendix B contains a sample terminal session using FIVPRE to

-. create a file. The commands used in the sample terminal session are NEW
and DUMP.

4.2 Editing An Existing File With FIVPRE

Appendix C contains a sample terminal session using FIVPRE to
edit an existing file. The commands used in this session are HELP, FIND,
ENTER, CHANGE, DISPLAY, and DUMP.

9

, 7

5. CONCLUDING REMARKS

FIVPRE provides a friendly interface between the user and a SHOP5
input file. With FIVPRE, new data files can be created and modified

without the exact knowledge of the format of the SHOP5 input or the
computer system editor. FIVPRE also keeps track of the files it creates,
and so the user does not have to remember the names of all the SHOP5 input
files he has created. In general, FIVPRE makes the use of SHOP5 much
easier.

%-'.1-

" -. '.'.10

S. -......... ,.......*' . --.... ,,

i.

TABLE 1: RECORD NAMES

Record

Number Abbreviation Description

1 RECI TITLE

- 2 REC2 PROGRAM CONTROL INTEGERS (PCI)

3 REC3 PRIMARY INPUT

4 REC4 METHOD CONTROL INTEGERS (MCI)

5 REC5 OPTIONAL INPUT

6 REC6 REJECTION/SEAKEEPING CRITERIA

7 REC7 USER-SUPPLIED APPENDAGE RESISTANCE

COEFFICIENT

8 REC8 USER-SUPPLIED OVERALL PROPULSIVE

COEFFICIENT

9 REC9 ENGINE ALGORITHM DATA

10 RECIO USER-SUPPLIED GENERATOR DATA

11 REC1I USER-SUPPLIED COST FACTORS

,211

-p"

"~~~~~~~~~ -. . .. - . • - . . °' ' . , '5 ' - " "- . - - ' " " °

APPENDIX A

DESCRIPTION OF SHOP5 INPUT VARIABLES

(Adapted from SHOP5 User's Manual)

For more detailed descriptions of the SHOPS input variables, see
the SH0P5 User's Manual.

RECORD (1): TIIIF.

TITLE Alphanuzieric title shown on output, Maximum 80 characters. This
title is written on lineprinter output from both SHOP5 and the

* post-processor.

RECORD (2): PROGRAM CONTROL INTEGERS

MODE Determines which of SEARCH or DESCRIBE modes is to be used.

INOUT Controls the system of units for input and output.

* -IPOST Controls the use of disk files for storage of output data for the
post-processor, FIVPOS.

ILPT Controls the use of lineprinter for output of ship data from the
SEARCH mode; must be input for both SEARCH and DESCRIBE mode.

ILEGND Controls the output of a legend of all parameters used in normal
lineprinter output; legend includes parameter name, description,
and unics.

NCON The number of Method Control Integers to be re-defined; default
method will be used only for those design method options not
re-defined. See Record (4).

NOPTN The numb'er of Optional Input to be re-defined; default values
will be used only for those Optional Input not re-defined. See
Record (5).

NLIM The number of rejection and seakeeping criteria to be re-defined;
default VaueIPS will bc used only for those parameters not

~' re-defined. See Record (6).

r-1

L" "-"12

....................................--.-
.

-.
-

RECORD (3): PRIMARY INPUT

This record provides the required input for definition of hull
form and operational requirements. Records (3.1) and (3.2) are for the

f-.," SEARCH and DESCRIBE modes, respectively.

(3.1): PRIMARY INPUT, SEARCH MODE
Program Control Integer MODE = 0

Independent Variables (hull form)

XXXLO Minimum Characteristic dimension value.

XXXHI Maximum Characteristic dimension value.
II Number of Characteristic dimension values to be considered.

See Note 1.

CRMLO Minimum length/displacement ratio.

CRMHI Maximum length/displacement ratio.
12 Number of length/displacement ratios to be considered.

CPLO Minimum prismatic coefficient.
CPHI Maximum prismatic coefficient.
13 Number of prismatic coefficients to be considered.

CBLO Minimum block coefficient.

CBHI Maximum block coefficient.
14 Number of block coefficients to be considered.

BOTLO Minimum beam/draft ratio.
BOTHI Maximum beam/draft ratio.
15 Number of beam/draft ratios to be considered.

Operational Requirements

E Minimum acceptable range at endurance speed (miles).
WC Combat system weight (ton;tonne).
VD Design speed (knots).

VC Cruise speed (knots).
VE Endurance speed (knots).
VW Seakeeping speed (knots).
HW Seakeeping significant wave height (ft;m).

Notes: (1) The type of input expected for the characteristic dimension
depends on the value of Method Control Integer IDIMEN. See
Record (4).

(2) Il x 12 x 13 x 14 x 15 must be < 801.

(3) Each of Ii, 12, 13, 14, 15 must be < 12.

13

L ' 1 + +i.i ii i . + * 1 - I ,

- ..+ % .i +.. "-' , "\""'

(3.2): PRIMARY INPUT, DESCRIBE MODE
Program Control Integer MODE > 0.

Independent Variables (hull form)

XXX Characteristic dimension, see Note I for Record (3.1).
CRM Length/displacement ratio (Froude notation, Circle M).
CP Prismatic coefficient.
CB Block coefficient.
BOT Beam/draft ratio.

Operational Requirements

WC Combat system weight (ton;tonne).
VD Design speed (knots).
VC Cruise speed (knots).
VE Endurance speed (knots).
VW Seakeeping speed (knots).
HW Seakeeping significant wave height (ft;m).

Notes: (1) A maximum of 11 ships may be considered by the DESCRIBE mode.

RECORD (4): Re-definition of METHOD CONTROL INTEGERS

Only used if Program Control Integer NCON > 0.

This record contains the numbers and new values of the Method
Control Integers which have been re-defined.

Descriptions of Method Control Integers!

NUMBER NAME VALUE DESCRIPTION

1 IDIMEN 0 Characteristic cjLmension =displacement
1 Characteristic d.meusion = length
2 Characteristic dimension - beam
3 Characteristic dimension = draft

2 IRESID 0 Residuary resistance from NRC FSS data
-__ I Residuary resistance from Taylor, Hamburg C,

or NPL Series data

3 IAPPND 0 SHOP5 Appendage resistance calculations
1 User-supplied appendage resistance coefficient

4 IPROP 0 SHOP5 OPC calculations, C. P. propeller
' 1 SHOP5 OPC calculations, fixed pitch propeller

2 User-supplied ov+ral! propulsive coeffizients

14

:, , ' : ,, : : ' -, . . -. - -..+ . .. , --,,. , . ..+ . . ., . , ,

NUMBER NAME VALUE DESCRIPTION

5 ISTRUC 0 Homogeneous hull and superstructure

1 Hybrid: Steel hull and aluminum superstructure

6 IENGIN 0 SHOP5 rubber engines

1 User-supplied rubber engines

2 SHOP5 hierarchy and SHOP5 data base
3 User-supplied hierarchy, SHOP5 data base

4 SHOP5 hierarchy, user-supplied data base
5 User-supplied hierarchy and data base

7 ICHOOS 0 SEARCH: must satisfy input engine
configurat ion
DESCRIBE: may use engine hierarchy

1 SEARCH: may use engine hierarchy
DESCRIBE: must satisfy input engine

configuration

8 IGEN 0 SHOP5 gas turbine generators
I SHOP5 diesel generators

2 User-supplied generator characteristics

9 ICOST 0 Standard cost factors (1977 dollars)
1 User-supplied cost factors

Note: (1) Re-definition of Method Control Integers may require

additional user-supplied input as follows:

Number Name Required Input

3 IAPPND Record (7)
4 IPROP Record (8)

6 IENGIN Record (9)
8 IGEN Record (10)

9 ICOST Record (11)

RECORD (5): Re-definition of OPTIONAL INPUT
Only used if Program Control Integer NOPTN > 0.

This record contains the numbers and new values of the Optional
Input which have been re-defined.

15

V. .-

•~~~ -,- "-. "-7

Descriptions of Optional Input

NN
NUMBER NAME DESCRIPTION

I FM MIDSHIPS FREEBOARD, DESCRIBE MODE
2 CW WATERPLANE COEFFICIENT
3 LCB LONGITUDINAL CENTRE OF BUOYANCY
4 LCF LONGITUDINAL CENTRE OF FLOTATION
5 NP COMPLEMENT
6 NDECK NUMBER OF INTERNAL DECKS
7 NBULK NUMBER OF WATERTIGHT COMPARTMENTS
8 C COMPARTMENT STANDARD OF FLOODING
9 LS SUPERSTRUCTURE LENGTH
10 FFP FREEBOARD AT FORWARD PERPENDICULAR
11 TOS WAVE MODAL PERIOD FOR HW (SEAKEEPING)
12 AMAX VERTICAL ACCELERATION/G, 0% CREW EFFECTIVENESS
13 AMIN VERTICAL ACCELERATION/G, 100% CREW EFFECTIVENESS

14 CITTC ITTC CORRELATION ALLOWANCE
15 DEHP DESIGN MARGIN ON EFFECTIVE POWER EHP=(l+DEHP)R*V
16 D IA PROPELLER DIAMETER
17 NSH NUMBER OF PROPELLER SHAFTS
18 NGEN NUMBER OF ELECTRICAL GENERATORS
19 PG ELECTRICAL POWER INSTALLED
20 PGE AVERAGE CRUISE ELECTRICAL POWER
21 HWR SIGNIFICANT WAVE HEIGHT FOR RANGE CALCULATIONS
22 TOR WAVE MODAL PERIOD FOR HWR
23 YIELD YIELD STRENGTH OF HULL MATERIAL
24 DENS DENSITY OF HULL MATERIAL

25 FICE FACTOR FOR ICE STRENGTHENING
26 RAFT MARGIN: MAIN ENGINE RAFTING
27 GEAR MARGIN: GEAR BOX WEIGHT
28 DGI MARGIN: GROUP I WEIGHT (HULL STRUCTURE)
29 DG2 MARGIN: GROUP 2 WEIGHT (PROPULSION MACHINERY)
30 DG3 MARGIN: GROUP 3 WEIGHT (ELECTRICAL)
31 DG5 MARGIN: GROUP 5 WEIGHT (AUXILIARIES)
32 DG6 MARGIN: GROUP 6 WEIGHT (OUTFIT AND FURNISHING)
33 DWB MARGIN- BASIC WEIGHT
34 DWD MARG DISPOSABLE WEIGHT
35 KGX VCG O EXTRA BASIC WEIGHT

36 KGC VCG OF COMBAT SYSTEM WEIGHT
37 VS SUPERSTRUCTURE VOLUME
38 DVM MARGIN: MACHINERY VOLUME
39 DVO MARGIN: SHIP SYSTEMS AND OUTFIT VOLUME
40 DVB MARGIN: BASIC VOLUME
41 DVN MARGIN: PERSONNEL VOLUME

-o 42 TD/T NORMALIZED TIME AT DESIGN SPEED
43 TC/T NORMALIZED TIME AT CRUISE SPEED
44 TE/T NORMALIZED TIME AT ENDURANCE SPEED

• . .

16

L

i -,

Note: (1) Optional Input may be re-defined as positive or negative

numbers, indicating, respectively, whether the new value is
an absolute quantity or a ratio.

RECORD (6): Re-definition of REJECTION AND SEAKEEPING CRITERIA

Only used if Program Control Integer NLIM > 0.

This record contains the numbers and new values of the rejection
criteria (SEARCH mode) or of the seakeeping criteria (DESCRIBE mode) which

have been re-defined.

(6.1): Re-definition of REJECTION CRITERIA, SEARCH mode only
Program Control Integers MODE = 0 and NLIM > 0.

Description of Rejection Criteria

NUMBER NAME DESCRIPTION RE-DEFINABLE

1 N WET Number of deck wetnesses/hour yes

2 ACCN 4 Vertical acceleration at Station 4/G yes
3 SLAM F Slam force / displacement yes
4 S EFF Seakeeping effectiveness yes
5 F MID Midship freeboard no

6 C MID Midship coefficient no
7 PROP E Overall propulsive coefficient at yes

endurance speed
8 ENGINE Engine configuration no

9 RANGE Range at endurance speed no
10 KG MAX Vertical centre of gravity yes

11 VOLUME Combat system volume yes

Note: (1) Only 7 of the 11 rejection criteria may be re-defined, as
shown above.

(6.2): Re-definition of SEAKEEPING CRITERIA, DESCRIBE mode only
Program Control Integers MODE > 0, NLIM > 0.

The seakeeping criteria are identical to the first four rejection
criteria, as shown above.

17

[. -- . I.

RECORD (7): User-supplied APPENDAGE RESISTANCE COEFFICIENT
Only used if Method Control Integer IAPPND = 1.

CAPP Appendage resistance coefficient.

Note: (1) The appendage resistance is equal to the total ship

frictional resistance multiplied by CAPP.

RECORD (8): User-supplied OVERALL PROPULSIVE COEFFICIENTS
Only used if Method Control Integer IPROP = 2.

-TAD Overall propulsive coefficient at design speed.
ETAC Overall propulsive coefficient at cruise speed.
ETAE Overall propulsive coefficient at endurance speed.

RECORD (9): ENGINE ALGORITHM DATA

Only used if Method Control Integer IENGIN > 0.

(9.1): User-supplied RUBBER ENGINE DATA
Only used when Method Control Integer IENGIN = 1.

SP 2 Specific weight of propulsion system (lb/HP; kg/kW).
SFC& Specific fuel consumption of engines, at full power (lb/HP-Hr;

kg/kW-Hr).

(9.2): SHOP5 Hierarchy and SHOP5 Engine Data Base

Only used when Method Control Integer IENGIN = 2.

ITYPE Engine configuration per shaft, one of the values below.
= 1, Single gas turbine
= 2, COGAG
= 3, COGOG
- 4, CODAG
- 5, CODOG
- 6, CODAD

IFUTUR Controls which engine data base is to be used (1980 engine data
-b'ase or 1995 engine data base)

TH1AR Controls which hierarchy is to be used for engine choice,
Pccording to the primary consideration (noise generation, gearbox
.,;mplexity, or progressive power)

18

.....,.,.. . ;. :.;..:. -....,....- .- - , -....- ,...... ;:-.. ' .-
- , , , , ', - , ". - • •........, , . ' ., ' . .' ., . '-' . , -

(9.3): User-supplied Hierarchy, SHOP5 Engine Data Base
Only used when Method Control Integer IENGIN = 3.

ITYPE Engine configuration per shaft (see Record (9.2))
IFUTUR Controls which engine data base is to be used (1980 engine data

base or 1995 engine data base)
HIARK(I) 1=1,6 Input of hierarchy, six numbers corresponding to those

shown for ITYPE in Record (9.2)

(9.4): SHOP5 Hierarchv, User-supplied Engine Data Base

Only used when Method Control Integer IENGIN = 4.

ITYPE Engine configuration per shaft (see Record (9.2))
IHIAR Controls which hierarchy is to be used for engine choice,

according to the primary consideration (noise generation,

gearbox complexity, or progressive power)
SPW2B Specific weight of propulsion system, not including engines

(lb/HP; kg/kW)

NTURB Number of gas turbine engines to be input by user.
NAMTUR(1) Name of turbine(I), maximum 16 characters.
POWT(I) Maximum power of turbine(I) (HP; kW).

SFCT(I) Specific fuel consumption of turbine(I) (lb/HP-Hr; kg/kW-Hr).
WTT(I) Weight of turbine(l) (ton;tonne).

NDIES Number of diesel engines to be input by user.
NAMDIE(1) Name of diesel(I), maximum 16 characters.
POWD(I) Maximum power of diesel(I) (HP; kW).
SFCD(I) Specific fuel consumption of diesel(I) (lb/HP-Hr; kg/kW-Hr).

WTD(I) Weight of diesel(I) (ton;tonne).

(9.5): User-supplied Hierarchy and Engine Data Base
Only used when Method Control Integer IENGIN = 5.

ITYPE Engine configuration per shaft (see Record (9.2))
SPW2B Specific weight of propulsion system, not including engines

(lb/HP; kg/kW)
HIARK(I) 1=1,6 Input of hierarchy, six numbers corresponding to those

shown for ITYPE in Record (9.2)

NTURB Number of gas turbine engines to be input by user.
NAMTUR(I) Name of turbine(I), maximum 16 characters.
POWT(I) Maximum power of turbine(l) (HP; kW).
SFCT(I) Specific fuel consumption of turbine(I) (lb/HP-Hr; kg/kW-Hr).
WTT(I) Weight of turbine(I) (ton;tonne).

19

NDIES Number of diesel engines to be input by user.
NAMDIE(I) Name of diesel(I), maximum 16 characters.
POWD(1) Maximum power of diesel(I) (HP; kW).
SFCD(I) Specific fuel consumption of diesel(I) (lb/HP-Hr; kg/kW-Hr).
WTD([) Weight of diesel(l) (ton;tonne).

RECORD (ic'0: User-supplied GENERATOR DATA

Only used when Niethod Control Integer IGEN = 2.

SFCC ':;pecific fuel consumption of generator set (lb.HP-Hr; kg/kW-Hr)
SPGEN SDecific weight of electrical system (lb/kW; kg/kW)

RECORD (11): User-supplied COST FACTORS
Only used when Method Control Integer ICOST = i.

ihis record contains the numbers and new values of the Optional

Input which have been re-defined.

Description of Cost Factors

NUMBER NAME DESCRIPTION

I AKI HULL (LESS SUPERSTRUCTURE)
2 AK2 SUPERSTRUCTURE
3 AK3 LIFT SYSTEM (NOT APPLICABLE)

4 4KA INSTALLED DIESEL POWER
5 AK5 INSTALLED GAS TURBINE POWER
6 AK6 ELECTRICAL SYSTEM
7 AK7 AUXILIARY SYSTEM
8 AK8 OUTFIT AND FURNISHING
9 AK9 SHIPYARD CONSTRUCTION

10 AK1O DESIGN AND ENGINEERING, LEAD SHIP
11 AKI DESIGN AND ENGINEERING, CLASS SHIP
12 AK12 CONSTRUCTION SERVICES
13 AK13 SHIPYARD PROFIT, LEAD SHIP

14 AK14 SHIPYARD PROFIT, CLASS SHIP
15 AKi5 MISCELLANEOUS SURCHARGES, LEAD SHIP
16 AK16 MISCELLANEOUS SURCHANRGES, CLASS SHIP

20

APPENDIX B

CREATING A NEW FILE (SAMPLE TERMINAL SESSION)

Following is an example of creation of a new data file using
FIVPRE. The user's typed values are underlined for clarity. Commands
used are NEW, DUMP, and EXIT.

Note: The command used to run the program FIVPRE depends on which
computer and operating system is used. In this example, the
command is "RUN FIVPRE".

RUN FIVPRE

FIVPRE

PRE-PROCESSOR FOR SHOP5

** READING LIBRARY FILE, PLEASE WAIT *

ARE YOU FAMILIAR WITH THIS PROGRAM ?"
ENTER 'Y' OR 'N' = > N

FIVPRE is a program which helps you create and edit the input
files for SHOP5, the concept exploration model for frigates and
destroyers. Using FIVPRE, you can easily define the values of

the various parameters that SHOP5 requires, change the values of
these parameters, and save the values in a file, which SHOP5 uses
as input.

FIVPRE is a command-oriented program: this means that you type
commands to tell FIVPRE what to do. When you are running FIVPRE,
you will see a prompt 'Comm ,,d = >' which means that FIVPRE is
waiting for you to type in a command.

To see a list of all the commands you can use in FIVPRE, type

'HELP' at the 'Command = > ' prompt. The 'HELP' command can
also give a more detailed description of a command.

** PUSH 'RETURN' KEY FOR NEXT SCREEN **

Here is a quick overview of a few basic FIVPRE commands:

The 'NEW' command starts a chain of questions which will ask you

for all the parameters you need to create a new SHOP5 input file.

21

"A - -,- - ~w - A' - -~. - , .7~ -

The 'DUMP' command saves the current value of all the variables

on a file called FIVIN, which is the input file for SHOP5. If

you specify a file name ir the 'DUMP' command, the data will be

saved in that file as well as irn FIVIN.

The 'ENTER' command reads an existing file so you can change it.

The 'CHANGE' command modifies e ,isting files which have been

ENTERed.

The 'DISPLAY' command displays the value of a variable.

The 'EXIT' command stops the FIVPRE program.

,.e* PUSH 'RETURN' KEY FOR NEXT SCREEN *

If you are not familiar with the SHOP5 variables; type 'NEW' at

the 'Command = > ' prompt. After yo:u finish with the 'NEW'

command (i.e. when you see the 'Command - 'prompt again)

type 'DUMP' to save the data you have just defined. To end the

FIVPRE program, type 'EXIT'.

You may also want to find out about the special input

characters. Type 'HELP SPECIAL' at the 'Command = > ' prompt

for an explanation.

Command = > NEW

ENTER TITLE = > SAMPLE INPUT 1, 50_ SHIPS, USING POST-PROCESSOR

-** PROGRAM CONTROL INTEGERS **

MODE

0 = SEARCH
I = DESCRIBE

MODE > 0

UNITS

0 = INPUT FPS, OUTPUT FPS
1 = INPUT METRIC, OUTPUT FPS

2 = INPUT FPS, OUTPUT METRIC

3 = INPUT METRIC, OUTPUT METRIC

UNITS - > 0

22

......................................- *,.*..-

-- L - -- 7

POST-PROCESSOR

0 = NO, POST-PROCESSOR WILL NOT BE USED

I = YES, POST-PROCESSOR WILL BE USED

POST-PROCESSOR = > 1

LEGEND

0 = NO LEGEND
1 = LEGEND OF ABBREVIATIONS WRITTEN ON LINEPRINTER

LEGEND = > 0

CHARACTERISTIC DIMENSION

0 - DISPLACEMENT

1 - LENGTH

2 - BEAM

3 - DRAFT

ENTER NUMBER = > 0

DISPLACEMENT: LOW 3800
HIGH 4200

NUMBER OF VALUES 9

LENGTH/DISPLACEMENT RATIO: LOW 7.8
HIGH 8.1

NUMBER OF VALUES 4

PRISMATIC COEFFICIENT: LOW .61
HIGH .62

NUMBER OF VALUES 2

BLOCK COEFFICIENT: LOW .46
HIGH .52

NUMBER OF VALUES 7

BEAM/DRAFT RATIO: LOW 3.25
HIGH 3.25

NUMBER OF VALUES 1

23

RANGE AT ENDURANCE SPEED = > 4000

COMBAT SYSTEM WEIGHT = > 350
DESIGN SPEED = > 30
CRUISE SPEED = > 18
ENDURANCE SPEED = > 15
SEAKEEPING SPEED = > 30
SEAKEEPING WAVE HEIGHT = > 9.843

** METHOD CONTROL INTEGERS **

1 - RESIDUARY RESISTANCE 5 - TYPE OF ENGINES
2 - APPENDAGE RESISTANCE 6 - TYPE OF GENERATORS

3 - PROPULSIVE EFFICIENCY 7 - COST FACTORS

4 - STRUCTURAL MATERIAL 99 - ** EXIT **

ENTER NUMBER = > 5

TYPE OF ENGINES

0 - SHOP5 RUBBER ENGINES

1 - USER SUPPLIED RUBBER ENGINES
2 - SHOP5 REAL ENGINES
3 - USER SUPPLIED REAL ENGINES

ENTER NUMBER = > 2

ENGINE DATA BASE

0 - 1980 ENGINE DATA BASE

1 - 1995 ENGINE DATA BASE

ENTER NUMBER = > 0

ENGINE CONFIGURATION

1 - SINGLE GAS TURBINE
2 - COGAG (COmbined Gas And Gas)
3 - COGOG (COmbined Gas Or Gas)
4 - CODAG (COmbined Diesel And Gas)
5 - CODOG (COmbined Diesel Or Gas)
6 - CODAD (COmbined Diesel And Diesel)

ENTER NUMBER -- > 2

k. 24

- .-."

CONFIGURATION CHANGE

0 - SHOP5 MUST USE THIS CONFIGURATION
I - SHOP5 MAY CHANGE CONFIGURATION

ENTER NUMBER = > 0

** METHOD CONTROL INTEGERS **

I - RESIDUARY RESISTANCE 5 - TYPE OF ENGINES
2 - APPENDAGE RESISTANCE 6 - TYPE OF GENERATORS
3 - PROPULSIVE EFFICIENCY 7 - COST FACTORS

4 - STRUCTURAL MATERIAL 99 - ** EXIT **

ENTER NUMBER = > 99

OPTIONAL INPUT

1 - GEOMETRY & COMPLEMENT

2 - SEAKEEPING

3 - POWERING AND MACHINERY
4 - STRUCTURE

5 - WEIGHT AND STABILITY
6 - VOLUME
7 - MISSION

99 - EXIT

ENTER NUMBER = > 1

GEOMETRY AND COMPLEMENT

I - MIDSHIPS HULL DEPTH

2 - WATERPLANE COEFFICIENT
3 - LONGITUDINAL CENTRE OF BUOYANCY
4 - LONGITUDINAL CENTRE OF FLOTATION
5 - COMPLEMENT

6 - NUMBER OF INTERNAL DECKS
7 - NUMBER OF WATERTIGHT COMPARTMENTS
8 - COMPARTMENT STANDARD OF FLOODING
9 - SUPERSTRUCTURE LENGTH

99 - EXIT

ENTER NUMBER = > 5

CURRENT VALUE (DEFAULT) = N/(DISP**(2/3)) = 1.0
USE NEGATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE
ENTER N: COMPLEMENT = > -.9

25

..•...

q4

GEOMETRY AND COMPLEMENT

1 - MIDSHIPS HULL DEPTH

2 - WATERPLANE COEFFICIENT
3 - LONGITUDINAL CENTRE OF BUOYANCY
4 - LONGITUDINAL CENTRE OF FLOTATION
5 - COMPLEMENT
6 - NUMBER OF INTERNAL DECKS
7 - NUMBER OF WATERTIGHT COMPARTMENTS
8 - COMPARTMENT STANDARD OF FLOODING
9 - SUPERSTRUCTURE LENGTH

99 - EXIT

ENTER NUMBER = > 9

CURRENT VALUE (DEFAULT) = Ls/L = 0.5
USE NEGATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE
ENTER Ls: SUPERSTRUCTURE LENGTH = • -. 58

,EOMETRY AND COMPLEMENT

1 - MIDSHIPS HULL DEPTH
2 - WATERPLANE COEFFICIENT
3 - LONGITUDINAL CENTRE OF BUOYANCY
4 LONGITUDINAL CENTRE OF FLOTATION
5 - COMPLEMENT

6 - NUMBER OF INTERNAL DECKS
7 - NUMBER OF WATERTIGHT COMPARTMENTS
8 - COMPARTMENT STANDARD OF FLOODING
9 - SUPERSTRUCTURE LENGTH

99 - EXIT

ENTER NUMBER > 99

OPTI ONAL INPUT

1 - GEOMIETRY & COMPLEMENT
2 - SEAKEEPING
3 - POWTERING AND MACHINERY
4 - STRUCTURE
5 - WEIGHT AND STABILITY

6 - VOLUME
7 MISSION

99 E 7,°

ENTER ,'iIBER >5

26

L
. *..* K9 i. .9 9

WEIGHT AND STABILITY

1 - MARGIN: HULL STRUCTURE WEIGHT
2 - MARGIN: PROPULSION MACHINERY WEIGHT
3 - MARGIN: ENGINE RAFTING
4 - MARGIN: GEAR BOX

5 - MARGIN: ELECTRICAL WEIGHT
6 - MARGIN: AUXILIARIES WEIGHT
7 - MARGIN: OUTFIT & FURNISHING WEIGHT
8 - MARGIN: BASIC WEIGHT

9 - MARGIN: DISPOSABLE WEIGHT
10 - VCG OF EXTRA BASIC WEIGHT
1i - VCG OF COMBAT WEIGHT
99 - EXIT

ENTER NUMBER = > 3

CURRENT VALUE (DEFAULT) = - 0.0
USE NEGATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE

ENTER RAFT: MARGIN: MAIN ENGINE RAFTING = > 50

WEIGHT AND STABILITY

1 - MARGIN: HULL STRUCTURE WEIGHT

2 - MARGIN: PROPULSION MACHINERY WEIGHT
3 - MARGIN: ENGINE RAFTING
4 - MARGIN: GEAR BOX

5 - MARGIN: ELECTRICAL WEIGHT
6 - MARGIN: AUXILIARIES WEIGHT
7 - MARGIN: OUTFIT & FURNISHING WEIGHT
8 - MARGIN: BASIC WEIGHT
9 - MARGIN: DISPOSABLE WEIGHT

10 - VCG OF EXTRA BASIC WEIGHT
S 11 - VCG OF COMBAT WEIGHT

99 - EXIT

, vENTER NUMBER = > 8
CURRENT VALUE (DEFAULT) - - 0.0

USE NEGATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE
ENTER dWb: MARGIN: BASIC WEIGHT (WB=W+W2+W3+W5+W6) > -.025

27

WEIGHT AND STABILITY

1 - MARGIN: HULL STRUCTURE WEIGHT

2 - MARGIN: PROPULSION MACHINERY WEIGHT

3 - IARGIN: ENGINE RAFTING
4 - MARGIN: GEAR BOX

5 - MARGIN: ELECTRICAL WEIGHT
6 - MARGIN: AUXILIARIES WEIGHT
7 - 'MARGIN: OUTFIT & FURNISHING WEIGHT
8 - ,'IARCIN: BASIC WEIGHT

.9 - MARGIN: DISPOSABLE WEIGHT

10 - VCG OF EXTRA BASIC WEIGHT
11 - VCG OF COMBAT WEIGHT
99 - EXIT

ENTER NUMBER = > 99

OPTIONAL INPUT

I - 'EOMETRY & COMPLEMENT
V 2 - SEZAKEEPING

3 - POWERING AND MACHINERY

4 - STRUCTURE
5 - WEIGHT AND STABILITY

6 - VOLUME
7 - MTSSION

99 - EXIT

ENTER NUMBER = > 6

VOLUME

S',PERSTRUCTURE VOLUME

2 - M-RGIN: MACHINERY VOLUME
3 - MARGIN: SHIP SYSTEMS & OUTFIT VOLUME
4 - M,:.RGIN: BASIC VOLUME
5 - MARCIN: PERSONNEL VOLUME

99 - EX:IT

ENTER .'MbER = > 1
CURRENT VALUE (DEFAULT) = Vs/Vt = 0.25

5E NiCATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE

ENTER 'sIM: STPRSTRUCTURE VOLUME => -. 28

28

6 . *

> %,"." ." - >.t" - " 'v " - . ..,. " ,. ,'-'-' .. ";v '.'..Y W < ; . ".-:, ' -' t.v " "" - ." " "* " i . "" "- "
V-. -*,%,% "., .'- ."-. ,. .. .,-.'. , .- A . , •.- t..,--....- - ... , -•. .. . - . - . . "- -. -"-

r.. %-I

,. ." VOLUME

I - SUPERSTRUCTURE VOLUME

- 2 - MARGIN: MACHINERY VOLUME
3 - MARGIN: SHIP SYSTEMS & OUTFIT VOLUME
4 - MARGIN: BASIC VOLUME

- . 5 - MARGIN: PERSONNEL VOLUME
99 - EXIT

ENTER NUMBER = > 99

OPTIONAL INPUT

I - GEOMETRY & COMPLEMENT

2 - SEAKEEPING

3 - POWERING AND MACHINERY

4 - STRUCTURE
5 - WEIGHT AND STABILITY

6 - VOLUME
7 - MISSION

99 - EXIT

ENTER NUMBER = > 99

REJECTION CRITERIA

I - NUMBER OF DECK WETNESS PER HOUR

2 - VERTICAL ACCELERATION AT STATION 4
3 - SLAM FORCE/DISPLACEMENT
4 - SEAKEEPING EFFECTIVENESS
5 - OPC AT ENDURANCE SPEED

6 - VERTICAL CENTRE OF GRAVITY
. 7 - COMBAT SYSTEM VOLUME

99 - EXIT

ENTER NUMBER =-> 7

CURRENT VALUE (DEFAULT) = 0.125
VOLUME: MIN. Vc (USE NEGATIVE NUMBER FOR Vc/Vt) => -. 15

29

.;** -K ** '*. .<.

4'

" REJECTION CRITERIA

I - NUMBER OF DECK WETNESS PER HOUR

2 - VERTICAL ACCELERATION AT STATION 4

3 - SLAM FORCE/DISPLACEMENT
4 - SEAKEEPING EFFECTIVENESS

5 - OPC AT ENDURANCE SPEED

7 - COMBAT SYSTEM VOLUME
99 - EXIT

ENTER NUMBER = > 99

*** END OF SEQUENTIAL INPUT *

Command = > DUMP
FILE NAME = > SAMPLE

WRITING DATA TO SAMPLE

WRITING DATA TO FIVIN

Command > EXIT

... **** YFISHED *

FORTRAN STOP

.Y.3

. .30

APPENDIX C

EDITING AN EXISTING FILE (SAMPLE TERMINAL SESSION)

Following is an example of editing an existing file, EX2, to
create a file named EX3. The user's typed values are underlined for

clarity. Commands used are HELP, FIND, ENTER, DISPLAY, CHANGE, DUMP, and

EXIT.

Note: The command used to run the program FIVPRE depends on which
computer and operating system is used. In this example, the
command is "RUN FIVPRE".

$ RUN FIVPRE
FIVPRE

PRE-PROCESSOR FOR SHOP5

** READING LIBRARY FILE, PLEASE WAIT **

"* ARE YOU FAMILIAR WITH THIS PROGRAM ?

ENTER 'Y' OR 'N' = > Y

Command = > HELP

*** FIVPRE COMMANDS AND TOPICS *

CHANGE EXIT

DEFAULT FIND

DISPLAY HELP
D UMP NEW
ENTER Special

For help on a particular command, type

HELP command

Command > HELP FIND

FIND

This command is used to find the name of a data file, based on

its title record. After entering the command FIND, the user isLprompted for a search key. If the user hits the return key
31

without entering a search string, the program will print all the

entries in the library file; otherwise, the program prints the
title and file name of the files in its library which contain the
search string in their title.

Format:
FIND

Command = > FIND
ENTER SEARCH STRING

(TO DISPLAY ALL ENTRIES, JUST HIT RETURN) = > HELl
SHOP5 EXAMPLE 1, 4000 TON SHIP, HELICOPTER

DATA FILE = EXI
* SHOP5 EXAMPLE 2, 4000 TON SHIP, HELICOPTER, COGAG

DATA FILE = EX2
Command = > ENTER EX2

REAING DATA FROM EX2

Command = > DISPLAY METHOD CONTROL INTEGERS

METHOD CONTROL INTEGERS

CHARACTERISTIC DIMENSION = Displacement
RESIDUARY RESISTANCE = NRC FSS "ata
APPENDAGE RESISTANCE = SHOP5 Calculations
PROPULSIVE COEFFICIENT = SHOP5 Calculations, C.P. Propeller
STRUCTURAL MATERIAL = Homogenous Hull and Superstructure (Steel)

*PROPULSION SYSTEM = SHOP5 Engine Data Base
ENGINE CONFIGURATION SELECTION = May Change Selected Engine Confi,,uration
GENERATORS = SHOP5 Gas Turbine Generators
COST FACTORS = SHOP5 Cost Factors (1977 Dollars)

Command = > DISP ENGINE DATA
** AMBIGUOUS INPUT **

1 - IFUTUR: CHOICE OF SHOP5 ENGINE DATA BASE

2 - RECORD 9: ENGINE ALGORITHM DATA
ENTER SELECTION NUMBER (OR 99 FOR EXIT) = > 2

PROPULSION SYSTEM

Engine Configuration = COGAG
1980 Engine Data Base

Hierarchy is NOISE
Command = > CHANGE ENGINE CONFIG

32

.. ,.

. . .-

. • .- • - . . .
= . -_ " -";i, d ~ l d, . . " " ," " -"

-, - _ -. W V . . . - f A . %- -4 - C -. . . .-- o ". - o i . - -

** AMBIGUOUS INPUT **
" 1 ICHOOS: ENGINE CONFIGURATION SELECTION

2 ITYPE: ENGINE CONFIGURATION PER SHAFT
ENTER SELECTION NUMBER (OR 99 FOR EXIT) > 2

ENGINE CONFIGURATION

I - SINGLE GAS TURBINE

2 - COGAG (COmbined Gas And Gas)
3 - COGOG (COmbined Gas Or Gas)
4 - CODAG (COmbined Diesel And Gas)
5 - CODOG (COmbined Diesel Or Gas)
6 - CODAD (COmbined Diesel And Diesel)

ENTER NUMBER = > 4

ENGINE CONFIGURATION SELECTION

0 - SHOP5 MUST USE THIS CONFIGURATION

1 - SHOP5 MAY CHANGE CONFIGURATION

ENTER NUMBER = > 1

GEARBOX HIERARCHY

0 - SHOP5 GEARBOX HIERARCHY
1 - USER SUPPLIED GEARBOX HIERARCHY

ENTER NUMBER = > 0

GEARBOX HIERARCHIES

GEARBOX SELECTION BEGINS AT THE BOTTOM OF A COLUMN AND BUBBLES
UPWARDS, UNTIL THE USER-SELECTED CONFIGURATION IS ENCOUNTERED.
SHOP5 ATTEMPTS TO SATISFY POWER REQUIREMENTS WITH THIS
CONFIGURATION; IF THIS CANNOT BE ACCOMPLISHED, THE NEXT
(UPWARDS) CONFIGURATION IS TRIED, UNTIL EITHER SATISFACTORY
ENGINES ARE FOUND, OR ALL POSSIBILITIES ARE TRIED.

33

SELECT ONE OF THESE HIERARCHIES

NOISE = 0 GEARING I 1 POWER = 2

CODAG COGAG

CODAG COGAG CODAG

COGAG COGOG COGOG

CODOG CODOG CODOG

COGOG CODAD CODAD

SINGLE SINGLE SINGLE

ENTER NUMBER > 0

Command = > DISPLAY METHOD CONTROL INTEGERS

METHOD CONTROL INTEGERS

CHARACTERISTIC DIMENSION = Displacement

RESIDUARY RESISTANCE = NRC FSS Data
APPENDAGE RESISTANCE = SHOP5 Calculations
PROPULSIVE COEFFICIENT = SHOP5 Calculations, C.P. Propeller

STRUCTURAL MATERIAL = Homogenous Hull and Superstructure (Steel)

'"PROPULSION SYSTEM = SHOP5 Engine Data Base
ENGINE CONFIGURATION SELECTION = May Change Selected Engine Configuration

GENERATORS = SHOP5 Gas Turbine Generators

COST FACTORS = SHOP5 Cost Factors (1977 Dollars)

Command = > CHANGE GENERATOR TYPE

TYPE OF GENERATORS

0 - SHOP5 GAS TURBINE GENERATORS
I - SHOP5 DIESEL GENERATORS
2 - USER SUPPLIED GENERATORS

ENTER NUMBER = > 1

Command = > DISPLAY OPTIONAL INPUT

RE-DEFINED OPTIONAL VARIABLES ARE:

N: COMPLEMENT = 200.0000

Ls: SUPERSTRUCTURE LENGTH = -0.5750
RAFT: MARGIN: MAIN ENGINE RAFTING = 50.0000

dWb: MARGIN: BASIC WEIGHT (WB=W+W2+W3+W5+W6) -0.0200

'.> : SUPERSTRUCTURE VOLUME = -0.2900

34

Command > CHANGE LS
DEFAULT VALUE IS Ls/L = 0.5
CURRENT VALUE IS -0.5750

USE NEGATIVE NUMBER FOR RATIO;
POSITIVE NUMBERS FOR FIXED VALUE

ENTER Ls: SUPERSTRUCTURE LENGTH = > DEF
Command = > CHANGE VS
DEFAULT VALUE IS Vs/Vt = 0.25
CURRENT VALUE IS -0.2900

. USE NEGATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE
ENTER Vs: SUPERSTRUCTURE VOLUME = > DEF
Command = > CHANGE GEAR

CURRENT VALUE (DEFAULT) = 0.0
USE NEGATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE

ENTER GEAR: MARGIN: GEAR BOX WEIGHT = > 50
Command = > CHANGE KGC

CURRENT VALUE (DEFAULT) = KGc/D = 0.70
USE NEGATIVE NUMBER FOR RATIO;

POSITIVE NUMBERS FOR FIXED VALUE
ENTER KGc: KG OF Wc = > -.70
Command = > DISPLAY OPT INPUT

RE-DEFINED OPTIONAL VARIABLES ARE:

N: COMPLEMENT = 200.0000
RAFT: MARGIN: MAIN ENGINE RAFTING = 50.0000
GEAR: MARGIN: GEAR BOX WEIGHT = 50.0000
dWb: MARGIN: BASIC WEIGHT (WB=Wl+W2+W3+W5+W6) = -0.0200
KGc: KG OF Wc = -0.7000
Command = > DISPLAY ALL

TITLE = SHOP5 EXAMPLE 2, 4000 TON SHIP, HELICOPTER, COGAG

PROGRAM CONTROL INTEGERS

MODE = Describe
INPUT/OUTPUT UNITS = Input - FPS, Output - FPS
DISK FILES FOR POST-PROCESSOR ? = No
LINEPRINTER OUTPUT ? = No
LEGEND OF ABBREVIATIONS WITH OUTPUT ? No

C ' " ** PUSH 'RETURN' KEY FOR NEXT SCREEN **

35

-" .. .

PRIMARY INPUT

SHIP NUMBER

"ISPL 4000.0

C GRM 8.10
CP 0.620
GB 0.500
L/T 3.200

wc 400.00
VD 30.00
.c 18.00

VE 15.00

30.00

HW 9.840

* PUSH 'RETURN' KEY FOR NEXT SCREEN **

Y I.THOD CONTROL INTEGERS

CHARACTERISTIC DIMENSION = Displacement
RESIDUARY RESISTANCE = NRC FSS Data
APPENDAGE RESISTANCE = SHOP5 Calculations
PROPULSIV. COEFFICIENT = SHOP5 Calculations, C.P. Propeller
STRUCTURAL MATERIAL = Homogenous Hull and Superstructure (Steel)

*PROPULSION SYSTEM = SHOP5 Engine Data Base
ENGINL CONFIGURATION SELECTION = May Change Selected Engine Configuration

*GENERATORS = SHOP5 Diesel Generators

C"ST FACTORS = SHOP5 Cost Factors (1977 Dollars)

PUSH 'RETURN' KEY FOR NEXT SCREEN **

RE-DEFINED OPTIONAL VARIABLES ARE:

N: COMPLEMENT = 200.0000
RAFT: MARGIN: MAIN ENGINE RAFTING = 50.0000
CFAR: fARGIN: GEAR BOX WEIGHT = 50.0000
.%'Wb: MARGIN: BASIC WEIGHT (WB=Wl+W2+W3+W5+W6) -0.0200
F.--: KG OF Wc = -0. 700k

6,

i ? 36

4- -'.-- i-i i -. . : ' . .-. . .. i " .i . , i -". i ' " i --" . ." - . -

r -. ---

NO RE-DEFINED SEAKEEPING CRITERIA

** PUSH 'RETURN' KEY FOR NEXT SCREEN **

PROPULSION SYSTEM

Engine Configuration = CODAG

1980 Engine Data Base
Hierarchy is NOISE

Command = > CHANGE TITLE
ENTER TITLE = > SHOP5 EXAMPLE 3, 4000 TON SHIP, CODAG
Command = > DISP TITLE

TITLE = SHOP5 EXAMPLE 3, 4000 TON SHIP, CODAG

i iCommand = > DUMP
* . FILE NAME = > EX3

** THIS FILE ALREADY EXISTS **

DO YOU WANT TO REPLACE IT WITH THE CURRENT FILE ?
IF NOT, TRY THE 'DUMP' COMMAND AGAIN, WITH A NEW FILE NAME

REPLACE ? ENTER 'Y' or 'N' = > Y
WRITING DATA TO EX3

WRITING DATA TO FIVIN

Command = > EXIT

S. **** FINISHED ****

FORTRAN STOP

37

F--7

a APPENDIX D

MACHINE DEPENDENCIES

FIVPRE is written in VAX-lI FORTRAN V3.0 on a VAX-I1/750
computer, using the VMS operai:ing system. It conforms to the ANSI

standard FORTRAN of 1977, except for the following features:

FIVPRE uses the character $ in FORMAT statements to suppress a
line feed after a WRITE statement. This feature is used to position the
cursor on the same line as the prompt after a prompt is written on the
terminal. Removing the $ from the FORMAT statements will not affect the
execution of the program, except that responses to the prompts will have

to be entered on a new line.

The OPEN and CLOSE statements are Standard FORTRAN 77 in syntax,

but other computers may not implement these statements in the same way
that the VAX does. The parameter 1OSTAT = IOVAL is used in the OPEN
statement to detect an error while trying to open a file; FIVPRE assumes
that there has been no error if TOVAL has the value of 0 after the OPEN
statement has executed.

The device numbers used in READ and WRITE statements are NTTY,
NDISK,and NDISK2 (see Appendix E.1.), and their values are set in the main

program unit FIVPRE. The device numbers for terminal and disk on other

machines may be different fron. those on the VAX.

38

%. .

APPENDIX E

GENERAL PROGRAM STRUCTURE OF FIVPRE

E.1 DATA STRUCTURES

FTVPRE uses common blocks to hold the values of all the variables
for SHOP5 input. Common blocks are also used to hold flags for these
input variables to indicate whether or not a variable has been defined.

The common blocks for SHOP5 input variables are:

COMMON/NOI/TITLE
COMMON/NO2/IODE, INOUT, IPOST, ILPT, ILEGND
COMMON/NO3AI/XXXLO,XXXHI,I1,CRMLO,CRMHI,I2,CPLO,CPHI,13,CBLO,

CBHI,I4,BOTLO,BOTHI,I5,E,WC,VD,VC,VE,VW,HW
COMMON/N03A2/XXX(11) ,CRM(11) ,CP(11) ,CB(11) ,BOT(1l) ,WC2(11),

VD2(ll) ,VC2(ll),VE2(ll),VW2(11),HW2(ll),NSHIPS
COMMON/N04/IDIMEN,IRESID,IAPPND,IPROP,ISTRUC,IENGIN,ICHOOS,IGEN, ICOST
COMMON/N05/OPTVAR(44)
COMMON/N06/REJECV(11)
COMMON/N07/CAPPU
COMMON/N08/ETAD ,ETAC,ETAE
COINON/N09/SPW2,SFCR,ITYPE,IFUTUR,IHIAR,HIARK(6) ,SPW2B,NTURB,

PQWT(2O),SFCT(2O),WTT(20),NDIES,POWD(20),SFCD(20),WTD(2O)
COMMON/NO9CH/NAMTUR(20) ,NAMDIE(20)
COMMON/NO lO/SFCG, SPGEN
COMMON/NOll/AK(16) ,NCOST
COMMON/NIJMBER/NCON,NOPTN,NLIM

The common blocks for the flags are:

COMMON/NOlA/FLAGI
COMMON/NO2A/FLAG2(5)
COMI40N/NO3A/FLAG3S(12) ,FLAG3D(11,11)
COMMON/NO4A/FLAG4 (9)
COMMON/NO5A/FLAG5 (44)
COMMON/NO6A/FLAG6(11)
COMMON/NO7A/FLAG7
COMMON/NO8A/FLAG8
COMMON/NO9A/FLAG9(6)
COMMON/NO lOA/FLAGl 0
COMMON/NOIlA/FLAG1l(16)

39

The other important common blocks are those which set the device
numbers for input and output:

COMMON/DEVICE/NTTY,NDISK,NDISK2

Other common blocks are described with the subroutines which use
them.

E.2 ALGORITHM OF MAIN PROGRAM UNIT FIVPRE

In general, the body of the main program unit is a 13op which
accepts a command from the terminal, performs the appropriate action,
accepts another command from the terminal, performs the appronriate
action, and so on. The loop ends when the command is "EXIT".

The pseudocode description gives more detail:

Begin
$ Initialize all flags and variables
$ Read in library file and update library data
Repeat

Accept a line of input from the terminal
$ Process the line of input (break it up into a word list)
$ Determine which command is meant

If command is "CHANGE" then
$ Change the value of the specified variable

Else if command is "DEFAULT" then
$ Display the default value of the specified variable

Else if command is "DISPLAY" then
$ Display the current value of the specified variable

Else if command is "DUMP" then

$ Write the data to a disk file
Else if command is "ENTER" then
$ Read in data from a disk file

Else if command is "FIND" then
$ Look for search key in the list of titles

Else if command is "HELP" then
$ List all the commands if no command is specified, or

list the information on the specified command
Else if command is "NEW" then

" . $ Change the values of all the variables
End if

*i Until command is "EXIT"
EnWrite the library data to the library file

End

40

The lines marked with a dollar sign () indicate that a

subroutine is called to perform that action.

The subroutines do most of the work in the program. They fall
into 4 main categories:

(i) Command processing subroutines.
There is only I subroutine in this category. This subroutine

takes a word of user input and determines which command it corresponds to.

(2) Dictionary subroutines.
These subroutines access the dictionary, a data block which

contains the names and descriptions of all the SHOP5 input variables. One

of the subroutines determines which variable is being specified by the

user; another subroutine finds the description of a variable, given its

code; another finds the description of the default value of a variable,

given its code.

(3) Command execution subroutines.
These subroutines carry out the action specified by a command,

e.g. change the value of variable, dump the data to a file.

(4) Utility subroutines.
These subroutines perform a variety of tasks. Some of these

tasks are: breaking a line of input into a list of words, converting a
character string to a numeric value, capitalizing the alphabetic
characters in a string, stripping leading blanks from a character string.

All these subroutines are described in more detail in following

appendices.

41

________- . :

APPENDIX F

COMMAND PROCESSING SUBROUTINES

This category of subroutines contains only one subroutine, the

integer function ICMDS.

Integer Function ICMDS

Purpose:

ICMDS takes a word (a character string) and looks through a
dictionary to find a command that matches the word. The dictionary is an

array containing the command words. A word is considered to match a
command if the letters of the word are the same as the first letters of
the command. For example, "EX" is a match for "EXIT". If there is no
match, ICMDS is given the value -1 and control is returned to the main

program. If there is more than one match, ICMDS prints a message and
returns to the main program with a value of -2. If there is a unique
match, the value of ICMDS is the position of the command in the array.

Arguments:

WORD, LENGTH
where

WORD = the word to be tested

LENGTH = the length of the word

Algorithm:

ICMDS looks for WORD in each entry of the command dictionary,
using the FORTRAN function INDEX, and counts the number of entries which
start with the character string in WORD. If the count is 0, the value of
ICMDS is set to -1. If the count is greater than 1, ICMDS prints a
message saying that the command is not unique, and then prints a list of
the all the commands which could be specified by WORD. If the count is 1,
the value of ICMDS is set to the position of the matching command in the

array.

42

APPENDIX G

THE FIVPRE DICTIONARIES AND ASSOCIATED SUBROUTINES

G.1 DICTIONARY STRUCTURE

The FIVPRE dictionaries are character arrays. There are three
dictionaries: the abbreviation dictionary, the description dictionary, and
the default value dictionary. Each dictionary entry refers to a SHOP5
input variable through a 10-character prefix. The structure of the prefix
is

RR. SS.VVV.

where RR is the record number of the variable, SS is the subrecord number

of the variable, and VVV is the variable code of the variable.

For example, a typical dictionary entry would be

'05.02.000.Cw: WATERPLANE COEFFICIENT'.

For this entry, the record number is 5 and the subrecord number is 2.

There are several reasons for using the prefix to identify a
variable. One reason is that the dictionary does not need to be ordered
when the prefix is used. The identification of the variable is
independent of its position in the array. Therefore adding new entries to
the dictionary is easy, since the dictionary does not have to be
rearranged each time a new entry is added. Another reason for using the
prefix is that more than one entry can refer to the same variable. This
feature is especially useful in the dictionary of abbreviations, since
there may be several abbreviations which refer to the same variable.

The FIVPRE dictionaries are contained in the common blocks

COMMON/NAMLST/SNAMES, LNAMES
COMMON/VALUES/DEFVAL

where SNAMES is the abbreviation dictionary, LNAMES is the description
dictionary, and DEFVAL is the default value dictionary.

43

7-1,

r.: *. 4- - 4w:. -" 7. 7.- .~ .- -.. -

-~ ". G.2 DICTIONARY SUBROUTINES

C.2.1 Subroutine DICT

Purpose:

DICT uses the abbreviation dictionary and the description
dictionary to identify which variable is being specified by a word list.
DICT consults the abbreviation dictionary first, looking for an exact
match. The method used is a simple linear search. If no match is found,
DICT then searches through the description dictionary. A series of linear
searches is used to look through the description dictionary. If a match
is found, DICT returns the codes for record number, subrecord number, and
variable number. if there is more than one match, but less than 15
matches, DICT displays the possible choices and asks the user to pick one.
If there are more than 15 matches, DICT prints a message telling the user
that the description is too ambiguous. If there are no matches, DICT sets
the flag FOUND to false.

Arguments:

BEGIN, RECNUM, SUBREC, VARCOD, FOUND

- "where

BEGIN = position in word list to start processing from
RECNUTM = character code for record number
SUBRIJC = character code for subrecord number
VARCOD = character code for variable number
FOUND = a flag which returns true if a match is found, false if

no match is found

Ciinnion blocks;

COMON/NAMLST/SNAMES,LNAMES (see Appendix G.1.)
SICOMON/CHARS/WRDLST (see Appendix 1.5.)
COMMON/WRDVAL/WRDLEN,NOWRDS (see Appendix 1.5.)

Algorithm:

Begin
Set search !4tring = first word to be processed in WRDLST
Repeat

Search through abbreviation dictionary
if no match, add next word in word list to search string

Untii a match is found or search string is too long

44

If match is found, then
Set values of RECNUM, SUBREC, and VARCOD
Set FOUND to true
RETURN

Else
Set current word = first word to be processed in WRDLST
While not at end of WRDLST and more than 1 matching entry do

Search through description dictionary and set dictionary flag
for each entry which doesn't contain the current word
Set current word = next word in WRDLST

- End while

:- If number of matching entries = 1 then
Set values of RECNUM, SUBREC, and VARCOD
Set FOUND to true
RETURN

End if
If numbez of matching entries > 15 then

Write a message
Set FOUND to false
RETURN

End if
If number of matching entries > I and < 15 then

Remove duplicates from matching entries (i.e. choices which
A. refer to the same variable)

Write list of choices and read user's choice
If choice is "none of the above" then

Set FOUND to false
RETURN

Else

Set values of RECNUM, SUBREC, and VARCOD
Set FOUND to true
RETURN

End if
End if

- If number of matching entries = 0 then

Write message
RETURN

End if
End if

-" End

45

"--i'

~J

G.2.2 Subroutine GETDES

4 Purpose:

GETDES s.- rches the description dictionary to find the
description corresponding to the given record number, subrecord number,
and variable number.

Arguments:

RECNUM, SUBREC, VARCOD, LENGTH, DESCR
where

RECNUM = character code for record number

SUBREC = character code for subrecord number
VARCOD = character code for variable number

LENGTH = number of characters in the description (DESCR)
DESCR = the character string which is the description of the

variable

Common blocks:

COMMON/NAMLST/SNAMES,LNAMES (see Appendix G. 1.)

Algorithm:

GETDES creates a search string by concatenating RECNUM, a period,
SUBREC, another period, VARCOD, and another period. Then GETDES uses a

linear search through the entries in the description dictionary LNAMES and
returns the first description which contains the search string in its
prefix.

G.2.3 Subroutine GETDFT

Purpose:

GETDFT i.- similar to GETDES. It searches through the default
value dictionary to find the entry which contains the given record number,
subrecord number, and v'.riable number in its prefix.

Arguments:

RECNUM, SUBREC, VARCOD, LENGTH, DESCR

where
RECNUM = character code for record number
SUBREC = character code for subrecord number
VARCOD = character code for variable number

." .'.

. -.--. .--. .. -. " , - - < .:..-" "-.-.- '"-.-.- '.V " ' -.-- . -" "

LENGTH = number of characters in the description of the default

value
DESCR = the character string which is the description of the

variable's default value

Common blocks:

COMMON/VALUES/DEFVAL (see Appendix G.1.)

Algorithm:

GETDFT first check the values of RECNUN and SUBREC to determine

whether the variable is ICHOOS or DIA. The default values of these two
variables depends on the value of MODE (for ICHOOS) and NSH (for DIA). If

the variable is not ICHOOS or DIA, GETDFT creates a search string by

concatenating RECNUM, a period, SUBREC, another period, VARCOD, and

another period. Then GETDFT uses a linear search through the entries in
the default value dictionary DEFVAL and returns the first description
which contains the search string in its prefix.

47

* . ..- .-

N

APPENDIX 11

COMMAND EXECUTION 3UBROUTINES

These subroutines carry out the actions which are specified by
the user's commands.

H.l SUBROUTINE CHANGE AND ASSOCIATED SUBROUTINES

These subroutines correspond to the CHANGE and NEW commands.
They define or re-define the values of the SHOP5 input variables. For
each record, there is a subroutine, or set of sjbroutines, which defines
the variables in that record. These subroutines have the names CRECn,

where n is the number of the record. For example, CREC4 is the subroutine
which defines or changes the values of Record 4, the Method Control
Integers. The subroutine CHANGE controls which of the CRFCn subroutines is
called to change the value of a variable.

The CHANGE and CRECn subroutines can be called in one of two
modes: either sequential or non-sequential. In sequential mode, the flow
of logic is sequential. In non-sequential mode, the flow of logic jumps
to the appropriate section of code and then control is returned to the
main program. This is accomplished by having entry points at the
beginning of each section of code and a check for seeuential mode at the
end of each section of code. If the mode is non-sequential, the flow of
logic jumps to the end of the subroutine after completing the specified
section of code. For example, here is a sample algorithm of a hypothetical
program with a similar organization to CHANGE:

BEGIN

If sequential mode go to Section I
If non-sequential, find which section should be executed
If 1, go to Section I
If 2, go to Section 2
If 3, go to Section 3

If 4, go to Section 4
Section 1

If non-sequential mode, go to END
Section 2

/L8

. ° .~ t - - - -- " . .' v • . ' • - . . . ' . ~ - -

If non-sequential mode, go to END

Section 3

Tf non-sequential mode, go to END
Section 4

Tf non-sequential mode, go to END
END

This program in sequential mode would execute Section 1,

thenSection 2, then Section 3, then Section 4. In non-sequential i de,
only one of these sections would be executed: the program would j to
the relevant section, execute the code until it reached the statement
testing for non-sequential mode, then jump to the end of the program.

If CHANGE is called in the sequential mode, all the CRECn
subroutines are called; this corresponds to the NEW command. In the
non-sequential mode, CHANGE determines which record the variable belongs
to and jumps to the appropriate section of code, which calls the
corresponding CRECn subroutine.

In the sequential mode for a CRECn subroutine, all the variables

in a record are changed or defined; this corresponds to a "CHANGE record
name" command. The CRECn subroutine in the non-sequential mode determine,
which subrecord the variable belongs to, jumps to the appropriate section
of code, which changes the value of the variable.

When in non-sequential mode, the CHANGE subroutines and the CRECn
subroutines use the FORTRAN computed GO TO statement to transfer control
to the appropriate sections of code.

The structure of some of the CRECn subroutines may vary from the
structure described above. This was necessary because the relationships
between some variables require a "ripple" effect: when one of the
variables is changed, the other variables related to it must be changed as
well.

H.I.1 Subroutine CHANGE

Purpose:

This subroutine coordinates the subroutines which change the

values of the SHOP5 input variables.

49

:- ".. " - ' -" - -. i .'' ' ', ''- "" - - " "' '' ," , ." - """ . ' -. ,. '" .'"--- " -. '' -.- . " '''." " -".' "." ' ..

Arguments:

NEW

where
NEW = an integer which determines whether sequential or

non-sequential mode is used

NEW = I invokes sequential mode

NEW = 0 invokes non-sequential mode

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2

COMMON/NO2/MODE,INOUT,IPOST,ILPT,ILEGND (see Appendix E.1.)

COMMON/CHARS/WRDLST
COMMON/WRDVAL/WRDLEN,NOWRDS (see Appendix 1.5.)
COMMON/INFO/BEGIN

The value of BEGIN is set in the main program unit FIVPRE. BEGIN
is the starting position for processing the word list WRDLST (see Appendix
G.2.1. Subroutine DICT).

Algorithm:

Begin

If sequential mode is specified, then
call INITIA to initialize variables

Else
Call DICT to determine which variable to change
Find which record the variable belongs to

Jump to the appropriate section of code, depending on :he record
number

End if
{Record 1}

Call CRECI
If non-sequential mode, RETURN
{Record 2}
Call CREC2
If non-sequential mode, RETURN
{Record 3}

Call CREC3
If non-sequential mode, RETURN
{Record 41

Call CREC4
If non-sequential mode, RETURN

50

{Record 51
Call CREC5

If non-sequential mode, RETURN
{Record 6}
Call CREC6
If non-sequential mode, RETURN
RETURN
{Record 71
CALL CREC7
If non-sequential mode, RETURN
{Record 8}

Call CREC8

If non-sequential mode, RETURN
{Record 9}
Call CREC9

If non-sequential mode, RETURN
{Record 10}
Call CREClO

If non-sequential mode, RETURN
{Record I1}
Call CREC11

If non-sequential mode, RETURN
End

H.1.2 The CRECn Subroutines

Most of the CRECn subroutines have the arguments

SUBREC, VARCOD, IALL
where

SUBREC = the character code which identifies the subrecord number

(e.g. the character code '02' identifies subrecord 2)

VARCOD = the character code which identifies the variable number

IALL = an integer whose value determines whether sequential or
non-sequential mode is used

All the CRECn subroutines have the common block

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.I.)

In addition, each CRECn subroutine contains the common blocks for
- -" the variables which the subroutine changes or defines.

A few subroutines, namely CREC4, C3SUBI and C3SUBI (which are
*- subroutines used by CREC3) use the common block

COMMON/CHARDM/CHRDIM,NDIM

51

77 - 7 17... 7 T - 7 W IT * " T r

where CHRDIM is a character array (CHRDIM(4)*12) and NDIM is an integer.

CHRDIM holds the strings 'DISPLACEMENT', 'LENGTH', 'BEAM', and 'DRAFT'.
NDIM is I if the characteristic dimension is displacement, 2 if the

characteristic dimension is length, 3 if it is beam, and 4 if it is draft.

The program structure for most of the CRECn subroutines is

basically the sequential/nonsequential structure described in Appendix
H.I. above. Exceptions are noted below.

H.1.2.1 Subroutine CREC3

* '" This subroutine decides which of two subroutines should be called

to change variables in Record 3. The two subroutines are called C3SUBI

.and C3SUB2. Subroutine C3SUBI is used when the program control integer
MODE is 0 (indicating search mode in SHOP5); subroutine C3SUB2 is used

when MODE is I (indicating describe mode in SHOP5).

Arguments:

SUBREC, VARCOD, IALL, ISWTCH

where
SUBREC = the character code which identifies the subrecord number

(e.g. the character code '02' identifies subrecord 2)
VARCOD = the character code which identifies the variable number

IALL = an integer whose value determines whether sequential or

non-sequential mode is used
ISWTCH = an integer whose value determines whether FIVPRE should

. give the user the option of transferring data from one
mode to another

The variable ISWTCH requires more explanation. If the user

changes the value of MODE, he must re-define the primary input variables

for Record 3. If ISWTCH is 1, the subroutine will ask the user if he
wants to keep the same operational requirements that he had defined for
the previous MODE. If the answer is yes, the program will transfer the
data from the primary input variables for one mode to the corresponding
variables for the other mode.

* -d The subroutine CREC3 does not actually use the value of ISWTCH;

it merely passes the value on to the subroutines C3SUBl and C3SUB2.

H.1.2.1.1. Subroutines C3SUBI and C3SUB2

Subroutine C3SUBl has the same arguments as CREC3 subroutines
(i.e. SUBREC,VARCOD,IALL,ISWTCH). It has the general sequential/

bn non-sequential program structure described in Appendix H.I.

52

. *:.

-:<'": • "..'- ,-'. "-. -..-. . .- . • -,...-,S . - . "--- ,-. -, .".. .- " - ,''---.' '' ' .l -"." .

Subroutine C3SUB2 also has the same arguments as CREC3

subroutines, but the program structure varies from the

sequential/nonsequential structure described Appendix H.l. C3SUB2 does
contain sections of code which are accessed either sequentially or
non-sequentially, and the non-sequential access is the same as for the
other CRECn subroutines. However, these sections of code are enclosed in
one large loop, which is used for sequential access. Each repetition of
the loop defines or changes the primary input for one ship. For

sequential mode, the loop is repeated until the values for all the ships
have been defined.

H.1.2.2 Subroutines CREC5, CREC6, And CREC11

The subroutines CREC5, CREC6, and CRECII have similar structures,
so they will be discussed together. They all have the standard CRECn
arguments (i.e.SUBREC,VARCOD,IALL), but they do not have the standard
CRECn program structure. The algorithm they use is as follows:

Begin
Write a menu of variables which can be re-defined
Ask the user which variable he wishes to re-define
If the user wants to exit the re-definition of variables, then

RETURN
Convert the number of the variable to the character code
Call GETDES to get the description of the variable
Write a prompt for the new value of the variable, using the
description from GETDES
Read the new value from the terminal
Go to the beginning of the subroutine

End

This algorithm was used to avoid too much repetitious code in the

subroutines CREC5, CREC6, and CRECII.

H.1.2.3 Subroutine CREC9

Subroutine CREC9 changes or defines the values for the variables

in Record 9. The program structure is not the same as that of the other
CRECn subroutines, because the subrecords of Record 9 are not organized in
a straightforward manner. The variables used for Record 9 depend on the

value of IENGIN (a method control variable). If IENGIN has the value 1,
then Record 9 is composed of the variables in Subrecord 1. If IENGIN is

2, then Record 9 is composed of the variables in Subrecords 2, 3, and 4.
If IENGIN is 3, Record 9 is composed of Subrecords 2, 3, and 5. If IENGIN
is 4, Record 9 is composed of Subrecords 2, 4, and 6. If IENGIN is 5,
Record 9 is composed of Subrecords 2, 5, and 6. (See Table H.1 for the
description of the subrecords of Record 9.)

53

Arguments:

SUBREC, VARCODE, IALL, ICTRL
where

SUBREC)
VARCOD) are the same as for the other CRECn subroutines

IALL

ICTRL an integer variable whose value signals that the value
of ICHOOS is to be changed. If ICTRL is 1, the program
jumps to the point designated by {Entry point for

ICHOOS} in the pseudocode below.

Common blocks:

In addition to the common blocks for the Record 9 variables and

flaga, CREC9 also contains the common block

COMMON/ENGDAT/NNGIN, IHRK

CREC9 sets the value of IENGIN depending the value of NENGIN and some
other variables which are set during the execution of CREC9. The value of
ICHOOS is set according to the value of IHRK and the current value of the

program control integer MODE.

Algorithm:

Begin
1. non-sequential mode, jump to appropriate part of code
if NENGIN = I

{Subrecord II

Define user-supplied engine data
Set IENGIN to I

RETURN
E.,-,d if

It NENGINE = 2
{Subrecord 3}
Choose SIIOP5 engine data base
If non-sequential mode, RETURN

{ u1,record 6}
Define user-supplied engine data base
If non-sequential mode, RETURN

i Subrecord 2}
C(Ooos cgine configuration per shaft

• {,try point for ICHOOS}

54

4 °.+

-

r,

Ask user if SHOP5 must use configuration or if SHOP5 may change

configuration
Set value of ICHOOS according to user's answer and current value of

MODE
Ask user to choose either SHOP5 gearbox hierarchy or user-supplied
gearbox hierarchy
If SHOP5 hierarchy chosen

{Subrecord 4}
Ask user to choose SHOP5 hierarchy

Else
{Subrecord 5}
Define user-supplied hierarchy

End if
Set value of IENGIN depending on value of NENGIN and user's choice
gearbox hierarchy

RETURN
End

H.2 SUBROUTINE SHODEF

Purpose:

SHODEF corresponds to the DEFAULT command. It displays the

default command of the specified variable.

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1.)

COMMON/INFO/BEGIN (see Appendix H.1.1.)
COMMON/CHARS/WRDLST
COMMON/WRDVAL/WRDLEN,NOWRDS (see Appendix 1.5.)

Algorithm:

SHODEF calls the subroutine DICT to find which variable is being
specified, then calls the subroutine GETDFT to find the default value of
the specified variable. If the variable cannot be found in the default
value dictionary, SHODEF prints a message saying that there is no default
value for this variable.

H.3 SUBROUTINE SHOW AND ASSOCIATED SUBROUTINES

The SHOW subroutine and its associated subroutines, the SRECn

subroutines, correspond to the DISPLAY command. They display the values
of variables on the terminal. The n in SRECn is the number of the record
which the subroutine displays. The SHOW subroutine controls which of the
SRECn subroutines is called.

55

_ _ _ _-. .

In program structure, SHOW and the SRECn subroutines resemble the
CHANGE subroutine and the CRECn subroutines. Like the CHANGE and CRECn
subroutines, the SHOW and SRECn subroutines can execute sequentially or
non-sequentially, i.e. the flow of logic can be sequential or it can jump
to the appropriate section of code and then exit from the subroutine.

The subroutine SHOW in sequential mode corresponds to the DISPLAY
ALL command. The SRECn subroutines in sequential mode correspond to the

"DISPLAY record name" command.

In the non-sequential mode, the SHOW and SRECn subroutines work

in the same way as the CHANGE and CRECn subroutines.

H.3.1 Subroutine SHOW

Purpose:

This subroutine coordinates the subroutines which display the

values of the SHOP5 input variables.

Arguments:

IALL

where
IALL = an integer which determines whether sequential or

non-sequential mode is u3ed
IALL 1 1 invokes sequential mode
IALL = 0 invokes non-sequential mode

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2
COMMON/NO2/MODE,INOUT,IPOST,ILPT,ILEGND
COMMON/NO4/IDIMEN,IRESID.IAPPND,IPROP,ISTRUC,IENGIN,ICHOOS,

IGEN,ICOST
COMMON/NUMBER/NCON,NOPTN,NLIM (see Appendix E.1.)

COMMON/CHARS/WRDLST
COMMON/WRDVAL/WRDLEN,NOWRDS (see Appendix 1.5.)

COMMON/INFO/BEGIN (see Appendix H.1.2.)

Algorithm:

Begin
If non-sequential mode is specified, then

Call DICT to determine which variable to display
Find which record the variable belongs to
Use a computed GO TO to jump to the zppropriate seztion of code

End if

56

-: '§...>-'

{Record 11
Call SREC1
If non-sequential mode, RETURN
{Record 2}
Call SREC2
If non-sequential mode, RETURN
{Record 3}

Call SREC3
If non-sequential mode, RETURN
{Record 4}
Call SREC4
If non-sequential mode, RETURN
{Record 5}
Call SREC5
If non-sequential mode, RETURN
{Record 6}

Call SREC6
If non-sequential mode, RETURN
{Record 71

Call SREC7
If non-sequential mode, RETURN
{Record 81
Call SREC8
If non-sequential mode, RETURN
{Record 9}
Call SREC9
If non-seqIuential mode, RETURN
{Record 101
Call SRECIO
If non-sequential mode, RETURN
{Record I}
Call SREC11
If non-sequential mode, RETURN
RETURN

End

H.3.2 The SRECn Subroutines

All the SRECn subroutines have the arguments

SUBREC, VARCOD, IALL
where

SUBREC = the character code which identifies the subrecord number
(e.g. the character code '02' identifies subrecord 2)

VARCOD = the character code which identifies the variable number
IALL = an integer whose value determines whether sequential or

non-sequential mode is used

57

-.. . . , . <..o .,,. .. ,•,.: - - . .* * i.7 ;7 W2 .9; '. I

All the SRECn subroutines have the common block

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1.)

The subroutine S3SUBI 'which is called by subroutine SREC3) also

uses the common block

COMMON/CHARDM/CHRDIM,NDIM (see Appendix H.1.2)

In addition, each SRECn subroutine contains the common blocks for
the variables which the subroutine displays.

The program structure for most of the SRECn subroutines is
basically the same as that of the subroutine SHOW. Exceptions are noted
below.

H.3.2.1 Subroutine SREC3

This subroutine decides which of two subroutines should be called
to display variables in Record 3. The two subroutines are called S3SUBl
and S3SUB2. Subroutine S3SUBl is used when the program control integer
MODE is 0 (indicating search mode in SHOPS); subroutine S3SUB2 is used
when MODE is greater than 0 (indicating describe mode in SHOPS).

Both subroutines S3SUBI and S3SUB2 have the same arguments as the
SRECn subroutines (i.e. SUBREC,VARCOD,IALL) and also have the general
program structure.

H.3.2.2 Subroutines SREC5 and SRECll

These subroutines have similar structures, so they will be
discussed together. They both have the standard SRECn arguments, i.e.
SUBREC,VARCOD,IALL. The algorithm they use is as follows:

Begin
* .If non-sequential mode, determine which variable should be displayed

If sequential mode, set counter to first variable in the record
Repeat

If variable has been re-defined then

Call GETDES to find description of variable
Write description and value of variable to screen

End if

If sequential mode, go on to next variable
If non-sequential mode, RETURN

Until all variables in the record have been processed
RETURN

End

58

. -..- 5

oo

H.3.2.3 Subroutine SREC9

This subroutine does not follow the sequential/non-sequential
structure of the other subroutines because the structure of Record 9

varies, depending on the value of the method control integer IENGIN. (See
the description of Record 9 variables in Appendix H.1.2.3.)

SREC9 has the same arguments as the other SRECn subroutines,

namely SUBREC, VARCOD, and IALL. Its algorithm is described below:

Algorithm:

Begin
If non-sequential mode then

If specified variable is not consistent with current value of
IENGIN, then RETURN
Jump to appropriate section of code, depending on subrecord number

End if
If IENGIN = 1 then

{Subrecord 1}
Display data for user-supplied rubber engines

RETURN
Else

{Subrecord 2}
Display engine configuration per shaft

If non-sequential mode, RETURN
If IENGIN = 2 or 3 then

{Subrecord 31
Display year of SHOP5 engine data base
If non-sequential mode, RETURN

End if
If IENGIN = 2 or 4 then

{Subrecord 41
Display SHOP5 gearbox hierarchy
If non-sequential mode, RETURN

End if
If IENGIN = 3 or 5 then

{Subrecord 5}
Display user-defined gearbox hierarchy

If non-sequential mode, RETURN
End if
If IENGIN = 4 or 5 then

{Subrecord 61
Display user-defined engine data base
If non-sequential mode, RETURN

End if
End if

End

59

. ~~..

H.4 SUBROUTINE DUMP

Purpose:

This subroutine corresponds to the command DUMP. The subroutine
DUMP creates a data file called FIVIN which is used as input for SHOP5.
If the user specifies a file other than FIVIN in the DUMP command, the
data will be written to this file as well as to FIVIN.

Arguments:

ISTAT
where

ISTAT - an integer which returns 0 if the DUMP executed without
error, -1 if there was an error

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.i.)
COMMON/CHARS/WRDLST
COMMON/WRDVAL/WRDLEN,NOWRDS (see Appendix 1.5.)
COMMON/LIBFIL/LIBDAT(30, 2)
COMMON/LIBNUM/NFILES (see Appendix 1.9.)

In addition, DUMP contains all the common blocks for the SHOP5
variables and their flags (see Appendix E.1.).

Algorithm:

Begin
Check to see if title and primary input have been defined (using
subroutine CHKDAT)
If title or primary input not defined, RETURN
If file name has not been specified then read a file name
If file name is not "FIVIN" then

While (file already exists) or (user does not want to overwrite)
Read another file name

N End while

End if
Write data to FIVIN
If file name is not "FIVIN" then

Write data to file
Add title and filename to library array LIBDAT

End if
RETURN

End

60

H.5 SUBROUTINE ENTER

Purpose:

This subroutine corresponds to the command ENTER. It reads data
from an existing file whose name is specified by the user.

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1.)
COMMON/CHARS/WRDLST
COMMON/WRDVAL/WRDLEN,NOWRDS
COMMON/XIO/LINE
COMMON/XI02/IJK (see Appendix 1.5.)

COMMON/LIBFIL/LIBDAT(30,2)
COMMON/LIBNUM/NFILES (see Appendix 1.9.)
COMMON/CHARDM/CHRDIM,NDIM (see Appendix H.1.2)

In addition, ENTER contains all the common blocks for the SHOP5
variables and their flags (see Appendix E.1.).

Algorithm:

Begin
If filename has not been specified then

Read filename
End if
While (file does not exist) and (user wants another file) do

Read another filename
End while
If user doesn't want another file then

RETURN
If file is not in library data then

Write a message saying file is not listed in library
Ask user if he wants to enter it anyway
If user says no, ask for another filename
If user says yes, set a flag

End if
Initialize all flags and variables
Read in data from file
If flag is set, enter file name and title into library file
RETURN

End

61

Z '

H.6 SUBROUTINE FIND

*FIND corresponds to the command FIND. This subroutine asks the
user for a search key, then looks through the library array for files
whose title contain the search key. The file names and titles of these

files are printed on the terminal.

Common blocks:

. COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1.)
* COMMON/LIBFIL/L IBDAT (3 0, 2)

COMMON/LIBNUM/NFILES (see Appendix 1.9.)

Algorithm:

Begin

Ask user for search key

If :,umber of files = 0 then
Write message saying library data doesn't exist
RETURN

End if
If search key is blank then

Write out all titles and file names in the library file
Else

'rite out rities and file names for files where the title

contains the search key
End if
RETURN

End

H.7 SUBROUTINE HELP

Purpose:

HEL; corresponds to the command HELP. This subroutine lists the
commands available in FIVPRE, or it lists information on a specified
FIVPRE commarid, depending on the argument INDEX.

Argument-:

IND"

, "where
IND;X an integer which determines wh'ch command is to be

explained (see algorithm)

62

|" '..-.

.-- " - "- " ". - " " 2 i • " ." • - -" , ," " -

Algorithm:

Begin
If INDEX = 0 then

Write the list of FIVPRE commands

Else if INDEX = 1 then
Write information about command CHANGE

Else if INDEX = 2 then
Write information about command DEFAULT

Else if INDEX = 3 then

Write information about command DISPLAY
Else if INDEX = 4 then

Write information about command ENTER
Else if INDEX = 5 then

Write information about command EXIT
Else if INDEX = 6 then

Write information about command DUMP
Else if INDEX = 7 then

Write information about command FIND
Else if INDEX = 8 then

Write information about command HELP
Else if INDEX = 9 then

Write information about command NEW

Else if INDEX = 10 then
Write an explanation of the special input symbols

Else if INDEX = -2 then
Write a message saying that command is not uniquely specified
Write the list of FIVPRE commands

Else if INDEX = -1 then
Write a message saying that no information is available for that
topic
Write the list of FIVPRE commands

End if
RETURN

End

63

.....................

TABLE H.I: SUBRECORDS OF RECORD 9

Subrecord

Number Description Variables in the Subrecord

I User-supplied engine data SPW2, SFCR

2 Engine configuration per shaft ITYPE
3 SHOP5 engine data ba se IFUTUR
4 SHOP5 hierarchy IHIAR

5 User hierarchy HIARK(I),I=1,6

6 User engine data base SPW2B,
NTURB, NDIES,
NANTUR(I), NAMDIE(I),
POWT(I), POWD(I),
SFCT(l), SFCD(I),

WTT(I), WTD(I)

. ... 2-.

Lr

-. 2

APPENDIX I

UTILITY SUBROUTINES

I.1 SUBROUTINE CAP

Purpose:

This subroutine capitalizes all lower-case letters in a character
string.

Arguments:

LINE

where
LINE = the character string to be capitalized

Algorithm:

Begin

Calculate the difference between the ASCII decimal equivalent (ADE) of
'A' and the ADE of 'a' using FORTRAN function ICHAR
For I = 1 to (length of LINE) do

If I'th character of LINE is a lower-case letter, then add on DIFF
(the difference calculated above) to the ADE of the character

End for
RETURN

End

1.2 SUBROUTINE STRIP

Purpose:

This subroutine strips off the leading blanks in a character
string and also returns the position of the last non-blank character in
the string.

Arguments:

LINE, IBLANK

where

LINE = character string to be processed
IBLANK = the position of the last non-blank character in
LINE

65

.V % *I6 IS t.L ,U . ***. v................................

-~~~~ -, -_ -- - - - - - -. . -. Z... I .

Algorithm:

Begin
Copy characters from LINE into STRING (another character string)
starting at first non-blank character in LINE
Starting at end of STRING and moving toward beginning of STRINC, look
at each character of STRING until a non-blank character is founi;

record its position in IBLANK
Copy STRING into LINE
RETURN

End

1.3 LOGICAL FUNCTION NUMBER

Purpose:

This function checks to see if a character string is a number.
It returns true if the character string is a number, and false if the
character string is not a number, i.e. if the string contains any
non-numeric characters other than 1+1 1 or '.1 or if the strin

... contains any imbedded blanks. A number may not contain more than one sign

('+' or '-') or more than one decimal point ('.').

- Arguments:

LINE, ISTART, 1END
where

"'" LINE = character string to be checked

ISTART = the starting position in LINE
-END = the last position in LINE to be processed

Algorithm:

Begin
Find first character in LINE which is not a '+', '-',or a blank

For I = (current character position) to lEND do
If I'th character in LINE is not a numeric character or it i the

second occurrence of a decimal point, then NUMBER is false
End

-' RETURN

SiEnd

66

• ~~~~~~~... #....... -

- :Jrr rxr . :- : J -. ~ t U . .> .' *. - -*.. -L - . ,- ., . , . v r. r., r . r ~. - '. . - . .- v - ,

1.4 SUBROUTINE CONVER

Purpose:

This subroutine converts a character string into a real number
(e.g. '124' would be converted to the real number 124).

Arguments:

STR, ANSWER

where
STR = character string to be converted
ANSWER = the real number which is the result of the conversion

Algorithm:

Begin

Right-justify the characters in STR
Use the FORTRAN internal READ to convert STR into a number
RE TURN

End

1.5 SUBROUTINE PLINE

Purpose:

This subroutine takes a character string and breaks it up into a

word list. Words are delimited by blanks, '=', semicolons, or commas.
Semicolons, commas, and '' are also considered to be words.

Arguments:

TYPO
where

TYPO an integer which determines whether a line of input is

read from the terminal

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.I.)

COMMON/CHARS/WRDLST
COMMON/WRDVAL/WRDLEN, NOWRDS
COMMON/XIO/LINE
COMMON/XIO2/IJK

67

whe re

WRDLST the word list (an array of character strings) which

results from the processing of LINE

WRDLEN an integer array which contains the length of the words

,-~ in WRDLST
NOWRDS = the number of words in WRDLST
LINE = the character string to be processed
IJK = the last non-blank character in LINE

Algorithm:

n egin

If TYPO = 1, read in a line of input (LINE) from the terminal

Call CAP to capitalize the line
Call STRIP to strip off leading blanks
For I = 1 to (end of character string) do

TEMP = I'th character in LINE

If TEMP is a blank, then
Finish processing the current word

Else if TEMP is a '=', semicolon, or comma, then

Finish processing the current word
Add TEMP to the word list

Else
Add the character to the current word

End if
End for

Scan tirough word list and remove all words with length = 0

RETURN
End

1.6 SUBROUTINE READIN

Purpose:

This subroutine reads in a value from the terminal and checks to
s.e if the value is of the specified type (integer,real, or character).

'f the value is not the right type (e.g. character when it should be

real), the subroutine prompts the user until an acceptable value is

entered. READIN checks for the "*" input before processing the value. It

Can also check for the word "DEF".

68

%"%
4,-

4 . ,. . o . . . , . , -

Arguments:

DTYPE, IVAL, RVAL, CVAL, PROMPT, IDEFLT

where
'TYPE = a character variable which specifies which data type to

read in. DTYPE can have the values 'I', 'R', or 'C' to
specify integer, real, or character variables.

IVAL = the returned integer value
RVAL = the returned real value -

CVAL = the returned character value
PROMPT = a character variable containing the phrase used to

prompt for input
IDEFLT = an integer whose value determines whether the word "DEF"

should be recognized:
If READIN is called with IDEFLT = 1, then READIN will
check for the word "DEF". If the word "DEF" is found,
the variable IDEFLT has the value 99 on return to the

main program.

Note that only one of the arguments IVAL, RVAL, or CVAL is used
to return the value which is read in. IVAL is used when DTYPE = 'I', RVAL
is used when DTYPE = 'R', and CVAL is used when DTYPE = 'C'. Dummy
arguments should be used for the two arguments which do not return the
value. T.r example, suppose the value to be read in is an integer.
READIN mignt be called with the statement

CALL READIN('I', INUM,DUMMY,DUMCHR,'ENTER AN INTEGER',O)

The reason for these multiple arguments is that FORTRAN does not
convert data types when values are passed through a subroutine's
arguments. If an argument is declared to be real in the subroutine, but
the calling statement uses an integer variable for that argument, then the
real value returned by the subroutine is not converted to an integer value.

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.1.)

Algorithm:

Begin

Repeat
Write PROMPT
Read a character string from the terminal

Call CAP to capitalize the string
Call STRIP to strip leading blanks

69

.°

If the first character is a '*', then
RETURN

Endif
If data type is numeric and string is not a number then

!f IDEFLT = 1 and string = 'DEF' then
Set value of IDEFLT
RETURN

.ise
Write an error message

Fnd if
End if

Until user has entered acceptable input
If data type is integer or real and string is a number then

Convert character string to a number
End if
If data type is character, CVAL = string
RETURN

End

1.7 SUBROUiVINE INITIA

Purpose:

INITIA initializes the values of all the SHOP5 variables and
their flags. The variables are initialized to 0, and the flags are
initialized to false. Character variables are initialized to blanks.

* - Common blocks.

TN'TIA contains all the common blocks for the SHOP5 variables and

thei- flags (see Appendix E.I.).

1.8 SUBROU''1NE ChKDAT

-. Purpose:

TI-is subroutine checks to see if the title (Record 1) and the

primary input ('-eord 3) have been defined. These two records are
required data and do not have default values.

Arguments:

IERR

where
'7"[IERR = an integer who- value is returned as 0 if both Record 1

and Record 3 are defined, -1 if Record I is undefined,
ind -2 if Record 3 is undefined or incompletely defined.

70

-o. °-%

- . °-'

-7.' °-M

1.9 SUBROUTINE LIBINT

4 Purpose:

This subroutine updates the library file, FIVLIB, by checking to
see that all the files listed in FIVLIB actually exist. If a file listed
in FIVLIB does not exist on the system, LIBINT deletes that en-y from
FIVLIB.

Common blocks:

COMMON/DEVICE/NTTY,NDISK,NDISK2 (see Appendix E.i.)

COMMON/LIBFIL/LIBDAT(30,2)
COMMON/LIBNUM/NFILES

where
LIBDAT = an array of character strings which contains the titles

and file names of files created by FIVPRE LIBDAT(I,l) is
the list of titles LIBDAT(I,2) is the list of file names

NFILES = the number of files listed in LIBDAT

Algorithm:

Begin
Read data from FIVLIB into the array LIBDAT
For each entry in LIBDAT do

Try to open file using FORTRAN OPEN statement with STATUS = 'OLD'
If there is an error, then delete the file name and title from
LIBDAT (i.e. set file name and title to blanks)

End for
Remove blank entries from LIBDAT
RETURN

End

P

• .-.

,'.'.."'. ""..... .." '...."..... "......",""-

REFERENCES

1. Colwell, J.L.: "SHOP5: A Frigate/Destroyer Exploration Model -

User's Manual", DREA Technical Memorandum in Review

2. Hally, David and C. Ann Dent: "GETWRD Package", DREA Technical
Memorandum 84/D, March 1984.

72

- ~~~~~~~~~~... _ . ,:...- .-, ,..............,. . . -, .
....

UNLIMITED DISTRIBUTION

UNCLASSIFIED

Security Clasmsflels

DOCUMENT CONTROL DATA - R & D4,0ui-y clsiiiication of Itile. body of abtract and indexing annotation nust be stered when the oerall document is claseifiedl

I ORIGINATING ACTIVITY 2a. DOCUMENT SECURITY CLASSIFICATION

IJrT.A.q.TFT L _
DREA 2b GROUP

J DOCUMENT TITLE
FIVPRE: A PRE-PROCESSOR FOR THE CONCEPT EXPLORATION MODEL SHOP5

4 DESCRIPTIVE NOTES fType of report end inclusive datle ch iasC)uicto

5 AUTHORIS) (Last name, first neme, middle initioll

Lee, Bonny; Colwell, J.L., Godreau, P.V.

6 DOCUMENT DATE 7a. TOTAL NO. OF PAGES 1 7b.NO.OF REFS
AUGUST :1985 78 2

8a. PROJECT OR GRANT NO. 9a ORIGINATOR'S DOCUMENT NUMBERISI

DREA TECHNICAL COMMUNICATION 85/310

8b. CONTRACT NO. 9b. OTHER DOCUMENT NOSI (Any other numbers that mey be
awegned this docurment)

10. DISTRIBUTION STATEMENT

11 SUPPLEMENTARY NOTES 12. SPONSORING ACTIVITY

DREA

13. ABSTRACT

FIVPRE is an interactive pre-processor for SHOPS, the DREA
Concept Exploration Model for conventional monohull frigates and
destroyers. FIVPRE provides the user with a simple means to create and
modify the input files for SHOP5. Prior knowledge of the format of these
files is not required. Through a simple command language, FIVPRE can be
used to define new or change existing values of SHOP5 input parameters
from the terminal. FIVPRE also keeps records of the files it has
created. This Technical Communication is a user's manual for FIVPRE,
describing the FIVPRE commands and giving examples of terminal sessions.
The appendices contain a brief description of SItOP5 input and program

- -documentation of FIVPRE, including descriptions of all the procedures in
FIVPRE.

73

,.'.

UNCLASSIFIED
Seewrity Classlflcallon

KEYr WORDS

-Pre-processor,

SHOPS
FIVPRE
Naval Architecture
Frigate
Destroyer
Concept Exploration Model.

INSTRUCTIONS

I ORIGINATING ACTIVITY Enter the name and addrass of the 9b. OTHER DOCUMENT NUMBER(S: If tha document has feen
orpanization issuing the document, ssigned any other document numbatrt (either by the or.q. nator

or by the sponsor). alto enter this nurnber(.
2.1 DOCUMENT SECURITY CLASSIFICATION. Enter the overall

seciiritv classification af the document including tpecial warning 10. DISTRIBUTION STATEMENT: Enter any I ftiathona oi.
terms whenever applicable, further dissemination of the document.,O othehan thoue "Moolod

by security classification, using standerd statemsents such .

2b GROUP, Enter security reclassification group number. The three
proilsis are dlefined in Appendix 'Matf the ORB Security Regulations. (I) "Ouslitiad requestert may obtain copies of tfhis

document from their defence documentation cews'r.-
3 D)OCUMENT TITLE: Enter the complete document 10t4 in all

c.,oiial letters Titles in all cases should be unclastitied. It a 121 "Announcement end dissemination of this docun'rnt
*sutficiently descriptive title cannot be selected wiithout classifi- is not authorized without prior approval frog,

cation. show title classification with the usual one-captal-letter originating activity."
ablvevistion in parentheses immediately following the title.

11. SUPPLEMENTARY NOTES: Use for additf,net explaiiet.- Y
4 DESCRIPTIVE NOTES. Enter the category of document. e.g. noses.

- . technical report, technical note or technical letter. if epopropni.
ate, enter the type of document. e.g. interim. progress. 12. SPONSORING ACTIVITY: Enter the nome of the depeir'nentel
summary, annual or final. Give the inclusive dates when Cproject office or laboratory sponsoring the research and
specitic repiorting period is covered, devlopment. Include address.

s'. 5 AUTHOR 151: Enter the name(s) of authorisl as sown on or 13. ABSTRACT: Enter an abstract giving a brief find factual
in the document. Enter lest name, first name, middle initial. suar y of the document, even thought it may aloID pu

Imilitary, shose rank. The name of the principal author is en else~*er in the body of the document itself. It it hily
absolute minimum requirement. desirable that the &busta of classified documents be uftclfsti-

fled. Each paragraph of the aextract shell and with en
6. DOCUMENT DATE; Enter the date (month. yvow) of indication of the security classification of the lolnfostto'

Establishment approval for Publication Of the document. in the paragraph (unleos the document isseff toUs e riclefi I
represented as (TSI. (S), 1C0. 11R1, or (U).

A Is. TOTAL NUMBER OF PAGES- The total page count sould
tollow normal pagination procedures. i.e.. enter the number The length of the abstract should be limited to 20 - 4 Wancecd
of pages containing information, standard typewritten lines; 7%4 inches tong.

7b NuMBVER OF REFERENCES. Enter she total number of 14. KEY WORDS: Kay words ore tehnically me.9fingfltrso
ref erenrces cited in the document. sort phrases that characterito a document eooul be= 1 i.u

in cataloging the document. Key words should be selected so
a PROJECT OR GRANT NUMBER: It appropriate, enter the that no security classification it required. Id*nt1ifWr. sucf* as

.ilCIocabite rsomich and development protect or grant number equipment model designation, trade name. mniltaery prolet rode6
under wvhiCh the document was written, nam, geographic location. may be used as key words but will

be follow*d by en indication of teichnical context.
8b. CONTRACT NUMBER if appropriate, enter the applicable

numbrer under which the document wet written.

' O rRIG NATOR'S DOCUMENT NUMBERISI. Enter the
, 1 ;.ii rlcument numher by which the document will be

idlrriifi,,iI end Controlled by the Oviginating actv. This
number must be unique to this document.

74

-w7

77 71 7:z* -

FILMED

DTIC

1-86

DTIC
~::r-~.

.,.*

